Appendix K
Yolo Annexation Feasibility Study
Staff's Assessment and
Recommendations, Final Report,
Sacramento Municipal Utility
District, 2005
(Provided on CD Only)

Yolo Annexation Feasibility Study Staff's Assessment and Recommendations

Final Report

April 18, 2005

Prepared by staff from:
Sacramento Municipal Utility District's Business Planning \& Budget Office
Distribution Services Design Resource Center
Customer Strategy Resource Center
System Operations and Reliability

Under the direction of:
John DiStasio, Assistant General Manager,
Energy Delivery \& Customer Services
James Tracy, Chief Financial Officer

For additional copies call:

916-732-6252

TABLE OF CONTENTS

EXECUTIVE SUMMARY OVERVIEW 3
SECTION 1. TECHNICAL EVALUATION
Technical Evaluation 22
Transmission Options 22
The California Independent System Operator (CAISO) Option 23
Acquire and Build the Transmission System Option 23
Transmission System Evaluation 24
Startup Costs 25
System Protection 25
SMUD's Load Serving Capacity and Capability 26
Validation of Transmission Replacement Cost New (RCN) 26
Transmission Lines Replacement Cost New (RCN) 27
Transmission Substations Replacement Cost New (RCN) 28
Distribution Summary 30
Distribution Replacement Cost New (RCN) 31
Substation Replacement Cost New (RCN) 31
Overhead Inventory 32
Underground Distribution Network Layout Estimation 36
Separation, Startup, and Ongoing Capital Costs 37
Summary of Valuation of Transmission and Distribution System 38
Comparison of SMUD to R.W. Beck's Report 39
SECTION 2. ECONOMIC EVALUATION
Economic Evaluation 43
Power Supply Costs 43
Debt Service and Acquisition Costs 45
Exit Fees. 46
SMUD Average Rates and Rate Forecast 46
PG\&E Average Rates and Rate Forecast 49
Operations, Maintenance, and Overhead Costs 52
Overall Impact of SMUD Analysis 56
Additional Sensitivities 58
Existing SMUD Customer Benefits 58

APPENDICES

Appendix A. Load Flow Tables
Appendix B. Rights-of-Way Costs
Appendix C. Substation Unit Costs
Appendix D. SMUD Base Case
Appendix E. System Valuation
Appendix F. Power Supply Cost
Appendix G. Debt Service Forecast

EXECUTIVE SUMMARY OVERVIEW

In January 2005, R.W. Beck released its SMUD Annexation Feasibility Study that evaluated the economic feasibility of annexing the cities of West Sacramento, Davis, and Woodland along with adjacent portions of Yolo County into SMUD's electric service area. The communities currently receive electric service from Pacific Gas \& Electric Company (PG\&E) and have requested annexation to SMUD. R.W. Beck analyzed numerous scenarios, the majority of which found that annexation would produce longterm savings relative to PG\&E rates.

This report by SMUD staff evaluates the R.W. Beck study and augments the work with additional analysis of critical economic and operational factors to ensure current SMUD customers do not subsidize annexation. The analysis also studied potential benefits of the proposed annexation that could accrue to current SMUD customers. Based on this review and analysis, staff has concluded that annexation of West Sacramento, Davis, Woodland and unincorporated areas between the three cities would be technically and economically feasible and that it offers benefits for prospective customers in those areas as well as for current SMUD customers.

SMUD staff findings include:

1. R.W. Beck's assumptions and analysis are reasonable, given little cooperation from PG\&E.
2. SMUD staff considered only annexation of all three cities and adjacent portions of Yolo County because it represents the most desirable customer mix for SMUD, offers the easiest means of separating from PG\&E's transmission system, and is the most financially viable overall. Other configurations discussed in the R.W. Beck report have technical limitations or do not generate as many benefits.
3. Savings are expected to be approximately 8% on a net present value basis ($\$ 180$ million) over the 20-year study horizon. Allocation of these savings between existing customers, new customers, or between customer classes is not yet completed.
4. Initial annual benefits are relatively low. However, with the benefits of municipal ownership, the economic value of annexation increases over time as cash flow from new customers is reinvested into system assets instead of being paid out to shareholders.
5. While Yolo customers' power costs would be higher than current SMUD customers' power costs, economies of scale in SMUD's operational costs and Yolo's lower debt service costs per customer more than offset the higher power cost. For study purposes, Yolo customers are not assumed to receive any benefits from SMUD's existing hydroelectric or other low cost energy resources.
6. Under staff's assumptions, Yolo customers provide a slightly higher cash flow per kWh of sales than the current SMUD customers. Under these conditions, existing SMUD customers are likely to have both tangible and intangible benefits due to the Yolo annexation.
7. Immediate interconnection of the SMUD electric system to the annexation area is preferable to relying temporarily on the California Independent System Operator. Interconnection of Yolo loads also improves utilization of SMUD's existing transmission assets.
8. SMUD staff is continuing to study how the District could structure a Yolo rate surcharge in which benefits are spread to the maximum number of customers and risks are reasonably allocated between current customers and potential customers in the annexation area.

Based on these findings SMUD staff recommends continuing with the annexation process with a filing at the Sacramento County Local Agency Formation Commission (LAFCO). The remainder of this report offers more detail on the technical and economic evaluation conducted by SMUD.

TECHNICAL EVALUATION OVERVIEW

SMUD staff reviewed the technical aspects of the R.W. Beck study to determine the validity and feasibility of serving the annexation areas. The R.W. Beck study contains a comprehensive assessment of existing transmission and distribution facilities and inventories and is well documented for further evaluation. District staff validated R.W. Beck's technical methodology and in some cases made adjustments based on SMUD's experience, information available from public sources, and SMUD's own approach to serving the annexed area loads. District staff believes that annexation of the areas addressed in the R.W. Beck study is technically feasible and would result in better utilization of SMUD's existing transmission system.

Transmission Options

R.W. Beck studied four annexation scenarios that addressed various load and jurisdictional options and transmission arrangements. R.W. Beck's methodology and assumptions in developing the four cases is well documented and extensive efforts are evident by R.W. Beck to identify and include as much inventory as possible despite lack of cooperation from PG\&E. SMUD staff reviewed R.W. Beck's options and conducted numerous load flow, system protection and system studies to validate and determine the technical feasibility of R.W. Beck's approach and to evaluate potential alternatives. While all of R.W. Beck's options are technically feasible, SMUD staff further studied only the option of annexing all three cities along with portions of Yolo County. This option is the system configuration that would be most cost effective, lowers the cost of initial transmission interconnection, offers the greatest use of existing and new transmission facilities, is the most technically feasible, and has the most support from the jurisdictions.

SMUD's analysis determined that reconfiguration of existing PG\&E and SMUD transmission lines would be the most cost effective and technically viable method of interconnecting certain Yolo load with the existing SMUD 115 kV transmission system. Specifically, the Brighton-Davis line would be converted to Hedge-Davis; Rio Oso-West Sacramento and Brighton-West Sacramento would be re-terminated as North City-West Sacramento and Hurley-West Sacramento respectively. In addition, SMUD staff determined that a new double circuit line (approximately 18 miles) from Elverta Substation to existing Woodland Substation would be required. Staff has evaluated the technical and real estate rights-of-way issues involved in building the new line and believes the construction of the new line would take approximately two to three years including environmental and other permitting requirements. New construction and reconfiguration of the existing transmission system would not require a significant leadtime and can be complete by 2008. The cost of reconfiguring existing lines and constructing the new double circuit line to Woodland would be less costly than the transmission alternatives identified in the R.W. Beck report.

The SMUD transmission configuration as proposed leverages existing capacity and infrastructure as well as minimizes stranding of PG\&E transmission facilities. For example, R.W. Beck proposed an additional 200 MVA $230 / 115 \mathrm{kV}$ transformer at Hurley Substation. However, SMUD staff determined that the new transformer is not needed based on existing capacity and planned changes on the $230 / 115 \mathrm{kV}$ system, which include a relocation of a $230 / 115 / 69 \mathrm{kV}$ transformer from Elk Grove Substation to Elverta Substation in 2005-2006. The configuration under the SMUD scenario enables PG\&E to utilize and continue to serve its adjoining loads with the same or improved reliability. SMUD studies also demonstrated potential benefits to PG\&E's transmission system as a result of reduced capital costs for transmission improvements associated with regional loads and Rio Oso and Vaca-Dixon sub-stations. It should be noted that the PG\&E transmission system in the annexed area is multi-terminal that results in lower customer reliability as compared to two terminal transmission lines practiced by the District. With multi-terminal lines distribution customers are subjected to transmission outages and power is more problematic to re-route in case of equipment or transmission line failure.

At present SMUD does not have any 115 kV interconnection with PG\&E and this is also the case under the SMUD transmission scenario. Transmission studies indicate reconfiguration of the transmission system should have no adverse impact on the PG\&E or SMUD transmission systems. A future interconnection with PG\&E on the 115 kV system is technically feasible and may serve to enhance regional transmission capabilities and reliability for both SMUD and PG\&E.

Although R.W. Beck did not address regional and local load serving capability, staff studies determined that Cosumnes Power Plant and Roseville Energy Park will need to be on line prior to annexation to comply with regional load serving and Control Area operational requirements. A future 230 kV transmission line to Western Area Power Administration's (WAPA) O'Banion Substation from Natomas/Elverta Substation will further enhance the SMUD and regional system performance. Staff also confirmed R.W. Beck's assessment that local transmission improvements such as line re-conductoring and breaker replacements may be required to address contingencies as a result of load growth and deficient PG\&E facilities in the area.

RW Beck assessed the use of the California Independent System Operator (CAISO) as the Transmission and Control Area service provider for the annexation area. SMUD staff does not recommend this approach as changing tariffs, regulations, and reliability provide significant uncertainty relative to SMUD's approach of integrating Yolo loads with SMUD's existing transmission system. In addition, the costs associated with transmission and control area services are significant and do not contribute to stable rates or reliable services in the long term. Future upgrades needed on the transmission system may prove difficult as PG\&E (the transmission owner) will have little incentive to maintain and improve the transmission system to SMUD's standards. At worst, the CAISO option can serve as an interim bridge while SMUD constructs and reconfigures transmission lines.

Distribution

Staff confirmed R.W. Beck's assessment and determined that the distribution system can be readily annexed and incorporated as part of the SMUD service area. No significant technical challenges or obstacles were identified with annexation.

The distribution system is primarily radial overhead and underground lines with a mix of construction methods. R.W. Beck developed detailed lists of facilities and equipment inventories consistent with prudent utility practices. Staff compared R.W. Beck equipment and inventory ratios against the SMUD system and found the ratios to be consistent with SMUD'S ratios.
R.W. Beck completed an engineering analysis to identify adequacy of the distribution system and deficiencies including future upgrades to serve load. SMUD validated R.W. Beck's technical assessment and determined that R.W. Beck's analysis and approach to be sound.

In certain cases, staff applied SMUD engineering standards and construction practices and made adjustments to inventory and facility designs. Some variances were identified in meter inventories and underground services. In addition, staff observed that PG\&E and SMUD design and construction practices differ. SMUD distribution design and construction practices tend to favor large feeder lines enabling loads to be switched from one source to another whereas PG\&E tends to use smaller capacity lines running further from source substations. SMUD's approach requires larger upfront capital outlays whereas PG\&E's approach generally requires significant capital investment to serve added load or to handle contingencies, outages, or equipment failures. Both practices are acceptable but produce different reliability outcomes.

Staff reviewed R.W. Beck's forecast of annexation area loads and determined that the projections used are consistent with SMUD's experience in Sacramento. From 2004 through 2013, Beck assumed the annual growth for the annexed area to be approximately 5.2 percent; in comparison SMUD's projected annual load growth is estimated to be 2.7 percent. Although annexation area growth is higher, it does compare to high growth areas within the District. Projected growth enables a conservative analysis with a 2013 total load estimate of 395 MVA.
R.W. Beck's study calls for a 240 MVA increase in $115 / 12 \mathrm{kV}$ transformer capacity bringing the total transformer capacity to 613 MVA representing transformer capacity utilization of 64 percent. In the R.W. Beck study the loads are treated as three independent service areas, i.e. Davis, Woodland, and West Sacramento/Deepwater, thus justifying lower transformer utilization. In comparison, SMUD's scenario suggests a net transformer capacity increase of 68 MVA. This capacity increase would bring the total annexed area transformer capacity up to 441 MVA. The transformer capacity utilization would then rise to 80 percent by 2013.
R.W. Beck's study includes costs for the existing substations in the proposed annexation area that are reasonable but somewhat conservative. Generally, SMUD staff estimated
that costs for substations are lower than R.W. Beck's estimates primarily due to lower transformer unit costs. R.W. Beck's study also includes costs for what are expected to be customer-owned substations. Staff in its assessment did not include costs for the customer-owned substation with the exception of high voltage metering costs.
R.W. Beck's study identified Plainfield substation load to be included in the annexation area. District staff reviewed the inclusion and determined that the load can be served from existing or future $115 / 12 \mathrm{kV}$ substations. In addition, PG\&E's 60 kV subtransmission and related substation facilities and the University of California, Davis load and facilities were not valued or included in SMUD's study.

Engineering analysis completed by District staff verified certain distribution systems in the study area that may be deficient and may require enhancements to bolster local voltage and load carrying capabilities. Neither R.W. Beck nor SMUD have considered system improvements to address differences in construction practices between PG\&E and SMUD and resulting reliability differences as part of annexation startup costs. It is understood that if annexation occurs, any load growth would likely be addressed utilizing SMUD design and construction standards resulting in higher reliability over time for the annexed area.

Based on SMUD's analysis of the distribution system and R.W. Beck's valuation and facilities assessment, District staff concurs with R.W. Beck's conclusion that there are no technical barriers or obstacles to incorporating the annexation area distribution system into SMUD's distribution system.

Valuation

R.W. Beck identified three methodologies to establish the value of the annexation area transmission and distribution systems. SMUD staff reviewed and verified these methodologies and recommends use of R.W. Beck's Cost Approach as the most appropriate valuation methodology. The Cost Approach estimates system value based on calculating Original Cost (OC) and Replacement Cost New (RCN) and then applying straight line depreciation to determine Original Cost Less Depreciation (OCLD) and Replacement Cost New Less Depreciation (RCNLD). Depreciation reduces the value of the system due to its age and condition.

SMUD staff validated R.W. Beck's system valuation by confirming inventory quantities, type of construction, condition and age of facilities, and unit costs of the equipment and installation. SMUD staff completed field inspection and condition assessments of distribution and transmission lines as well as independent assessment of real estate and right-of-way costs. SMUD valued real estate and rights-of-way at market value where R.W. Beck's real estate costs were not segregated and may have been depreciated. Based on staff's verification and analysis, staff's estimate of the transmission, distribution, and overall system value for the annexation area is as follows:

	RW Beck (In \$ Millions)	SMUD (In \$ Millions)	Difference (In \$ Millions)
Transmission $\$ 2$ $\$ 3.6$ $+\$ 1.6$ $O C L D$ $\$ 17$ $\$ 14.7$ $-\$ 2.3$ $R C N L D$ $\$ 53$ $\$ 80$ $+\$ 27$ Distribution $\$ 91$ $\$ 115.7$ $+\$ 24.7$ $O C L D$ $\$ 55$ $\$ 84$ $+\$ 29$ $R C N L D$ $\$ 108$ $\$ 130$ $+\$ 22$ Total System $O C L D$ $R C N L D$			

R.W. Beck's estimates for RCNLD on the transmission system were higher due to higher unit costs and more stranded facilities as compared to an alternative scenario developed by SMUD staff. In addition, higher costs for real estate and rights-of-way were offset by lower costs on transmission equipment resulting in a reduction in transmission RCNLD.

However, SMUD's distribution costs relative to R.W. Beck's are higher. Staff increased the number of meters, service drops, and adjusted for higher cost of some underground facilities including feeders. The changes made by SMUD staff were based on available public information and comparisons of SMUD's system and unit costs. To be conservative and given the limited information provided by PG\&E, distribution costs were increased to better reflect SMUD's construction standards and unit costs. These changes in assumed costs and construction standards result in an increase in distribution system OCLD and RCNLD.

SMUD staff reviewed PG\&E's limited information on estimates of distribution and transmission system value. Based on SMUD's staff review it is clear PG\&E's estimates were overstated by:

- Exaggerating unit costs
- Providing estimates that do not reflect observed or known field conditions
- Claiming distribution easement costs that are inconsistent with industry practices
- Double counting of costs on underground line construction

SMUD's system valuation reflects SMUD's current electric construction and installation practices, industry standards, and reasonable assumptions on the type and length of underground structures and lines. SMUD's valuation supports R.W. Beck's assessment of transmission and distribution system value.

Annexation Area Separation from PG\&E

Staff reviewed the separation issues and determined that there are no significant technical issues with transmission or distribution separation.

A number of transmission lines will be reconfigured based on the SMUD transmission scenario with construction of a new 115 kV double circuit line from Woodland to Elverta Substation. The right-of-way acquisition for the new line does not appear complicated once an environmental impact report (EIR) has been completed. Staff has determined that adequate substation space and configurations are available for the proposed additions and modifications. SMUD and PG\&E transmission lines in the Rio Oso-West Sacramento, Brighton-West Sacramento, and Davis-Brighton share corridors making the physical reconfiguration relatively straightforward.

In R.W. Beck's study, the Brighton-Davis 115 kV line is configured as the Hurley-Davis line. Whereas, in the SMUD scenario the line is configured at Hedge-Davis line idling or stranding the Davis 115 kV line position at Brighton Substation. Staff assumed the line would be reconfigured in the common right-of-way close to SMUD's Hedge-South City 115 kV lines. Similarly, the line taps on the Rio Oso-VacaDixon lines will be disconnected and Woodland line reconnected to the proposed new transmission line to Elverta Substation. In this case a portion of the tap from Woodland Substation to the Rio Oso-VacaDixon line would be idled. None of these transmission separations and reconfigurations poses technical problems.

Additionally, both R.W. Beck and SMUD technical studies and valuation assumed that the University of California, Davis load would be served from PG\&E's Vaca-Dixon Substation and the Davis Substation $115 / 60 \mathrm{kV}$ transformer will be idled or stranded. New interconnections between PG\&E and SMUD can be established on the 115 kV and 60 kV transmission system that could be mutually beneficial.

Separation and isolation of the distribution system is relatively uncomplicated where existing switches or line jumpers can be removed providing for clear demarcation of facilities.

Separation, Startup, and Ongoing Capital Costs

R.W. Beck's estimated separation and startup costs are in line with staff's estimates. SMUD's startup cost estimate includes installation of new distribution and transmission facilities, obtaining system information and records from PG\&E, and costs of incorporating the annexed facilities into SMUD's Geographical Information System, Outage Management System, and SAP.
R.W. Beck estimated ongoing capital requirements to be 1% of acquisition costs. SMUD's approach was to use its 2005 budget to estimate ongoing capital upgrades, which includes costs for cable replacement, cable injection, pole replacements, pole reinforcements, new services (net of Rule 15 and Rule 16 revenues), and local agency
improvements. This resulted in a slightly lower annual capital requirement mainly due to R.W. Beck not including developer contributions as an offset to annual capital requirements.

	RW Beck (In \$ Millions)	SMUD (In \$ Millions)	Variance (In \$ Millions)
Separation Cost	$\$ 2$	$\$ 2.3$	$+\$ 0.3$
Startup Cost	$\$ 45^{*}$	$\$ 40$	$-\$ 5$
Ongoing Capital	$\$ 5.2$	$\$ 3.3$	$-\$ 1.9$

*Additional \$6M in 2013 to include transmission enhancements such as line re-conductor and capacitor installs

ECONOMIC EVALUATION OVERVIEW

R.W. Beck's annexation economic analysis studied numerous scenarios and tested many assumptions, finding that under the vast majority of circumstances SMUD annexation would result in positive margins and savings for Yolo customers. Savings ranged from a low of -2.2% to a high of 11.25%, with a "most likely" case that resulted in an 8.5% savings. Given little useful data and cooperation from PG\&E, R.W. Beck's analysis made reasonable assumptions on key variables and addressed economic risks through sensitivities. SMUD staff has reviewed R.W. Beck's analysis and believes both the methodology and the assumptions applied were reasonable. However, SMUD staff developed its own analysis to address alternatives on key assumptions, incorporate SMUD's expected cost of serving Yolo customers, validate important inputs, and evaluate the potential for SMUD's existing customers to benefit from annexation. SMUD's staff analysis essentially confirms R.W. Beck's results and indicates that annexation could result in an 8% margin relative to PG\&E's forecasted average rates. In addition, the analysis also shows that depending on how these margins are divided, current SMUD customers are likely to have both tangible and intangible benefits due to annexation. Although SMUD staff believes positive margins over the entire study period are very likely, relatively high power supply, debt service, and exit fees in the short run could limit the savings prior to 2012. The following describes the key variables and assumptions addressed by the SMUD staff analysis.

Power Supply Costs

Power supply costs include energy, capacity, ancillary services, and renewable energy supplies for the annexed area.

Staff evaluated the costs of supplying energy, capacity reserves, and ancillary services, for base and intermediate load energy through ownership of a new natural gas fired generation plant. Costs for energy during peak load periods are met through long-term purchase power contracts.

The costs for both new natural gas generation and purchase power contracts are based on generation data included in CPUC Rulemaking 04-04-026 (Filed April 22, 2004).
Natural gas costs were the same as those used in the R.W. Beck study and financing costs included a 30% debt service coverage. The cash flow from the debt service coverage is used to offset future investment requirements in new plant so that over time customer equity accumulates and the fixed cost component of power decreases on an energy basis. Costs also include a $\$ 5 / \mathrm{MWh}$ renewable adder for 20% of annexation area energy requirements.

The resulting power supply costs are higher than those included in the R.W. Beck study, as shown in the figure below.

Yolo Cost of Power

In addition, power supply costs for PG\&E's uncommitted energy also increased to reflect a similar energy purchasing strategy as that used to meet Yolo loads. The impact of these changes in power costs assumptions is to increase the cost of power for both Yolo and PG\&E. The increase to PG\&E is slightly less because about 30% of PG\&E's long term resource mix comes from hydroelectric or nuclear power. Overall, these assumption changes reduced the net present value of annexation savings by approximately $\$ 34$ million, or about 1.5% relative to R.W. Beck assumptions on power supply costs.

Debt Service and Acquisition Costs

Based on SMUD's technical evaluation of the R.W. Beck study and SMUD's independent verification of the value of the Yolo electric system, initial debt issuance included the costs of system acquisition, severance costs, startup costs, litigation costs, and costs of debt issuance. Ongoing capital investments were also included in the year in which they are incurred. Initial capital investments were assumed to be financed entirely with debt issued at the beginning of the year when the assets are acquired. The debt service revenue requirement included debt service coverage, resulting in a revenue requirement of 1.3 times debt service. The additional coverage was retained as equity and used to partially finance capital investments in subsequent years. The remaining balance of subsequent capital additions were financed with tax-exempt debt issued at the beginning of the year in which the capital assets were acquired.

Debt payments for all debt issued was based on level payment of principal and interest with a thirty-year term. An interest rate of 6.25% was used for taxable debt while taxexempt debt was issued at 5.00%. Overall debt payments based on these assumptions were slightly lower than R.W. Beck's assumed debt service payments and resulted in an increase in the net present value of savings of about $\$ 30$ million.

Exit Fees

During the California energy crisis in 2000-2001, the California Department of Water Resources (DWR) took over purchasing energy for California's Investor Owned Utilities (IOUs). The energy purchased and the energy contracts signed by the DWR were generally more expensive than subsequent market prices. As a result, any customers no longer requiring IOU energy resources (including long-term DWR contracts) were obligated to pay exit fees. The California Public Utilities Commission (CPUC) in Decision 04-12-059 allowed certain customers exemptions from a portion of the exit fees on the basis that their loads were not included in the load forecasts used by the DWR to acquire the long-term energy contracts. R.W. Beck assumed that all of the City of Davis load and 20% of all new load in the annexation territories would receive exemptions from the exit fees.

To be conservative, SMUD staff has assumed that the exit fee exemptions will only apply to 10% of Davis load and to none of the new load in the annexation territories. To the extent that new load or more than 10% of Davis load receives an exit fee exemption, savings between about 2008 and 2012 will increase by approximately $\$ 10$ million on an NPV basis.

SMUD Average Rates and Rate Forecast

SMUD average rates by customer class constitute the basis for projecting SMUD revenue in the proposed annexation area. Residential average rates were developed using rates that became effective on March 30, 2005, combined with residential usage in the annexation territory. Residential usage in the annexation area was obtained from a 1997 PG\&E database that included monthly energy use data for every residential customer, sorted by zip codes. The analysis relied on this robust data sample to model monthly tier energy use by annexation area and city, a critical factor for estimating residential pricing under SMUD's three-tier rate structure. Commercial average rates were developed using estimated load shapes that were consistent with the load shapes provided by PG\&E for commercial customers in the annexation area, but with greater detail.

The resulting average residential and commercial rates were weighted by energy use by rate class provided by PG\&E for the three annexation communities. The final average rate per jurisdiction ranges between 9.3 \& per kilowatt-hour for West Sacramento to nearly $10.0 \notin$ per kWh for Davis.

Weighted Average SMUD Rate by Area

West Sacramento	Davis	Woodland
$\$ 0.0930$	$\$ 0.0999$	$\$ 0.0956$

These average rates were then forecast based on inflation, expiring long-term contracts, reduced nuclear decommissioning costs, hydro relicensing costs, open position energy costs, natural gas costs, and renewable power supply costs.

PG\&E Average Rates and Rate Forecast

PG\&E average rates help determine the margins associated with annexation as PG\&E average rates are the rates Yolo customers would otherwise pay absent annexation into SMUD's service area. To project future PG\&E rates Yolo customers would be exposed to, SMUD staff reviewed PG\&E class specific rate and load shape information. PG\&E provided limited information in response to data requests submitted by the Yolo jurisdictions to help determine or verify appropriate existing or future PG\&E average rates. However, PG\&E did provide system average rates by customer class from its Phase II General Rate Case ("GRC") filing and a table showing estimated Phase II average rates for West Sacramento, Davis, and Woodland by customer class. The table also presented kWh sales information for customer classes including residential, small commercial, medium commercial, large commercial, agricultural, and other.

SMUD staff validated PG\&E residential rates using residential billing data obtained from PG\&E in 1997. In response to data requests, PG\&E submitted typical weekday/weekend load shape data providing average hourly energy use for each month of the year by customer class. Both residential and commercial hourly load shapes were comparable to SMUD's typical weekday/weekend load shapes.

Results of the review validated PG\&E's estimated residential average rates by annexation area and the use of PG\&E's GRC Phase II average rates for commercial customers. The table below presents the average estimated rate for three Yolo annexation communities.

Average Estimated Weighted PG\&E Rate (Yolo Annexation Area)

West Sacramento	Davis	Woodland
$\$ 0.1187$	$\$ 0.1310$	$\$ 0.1235$

PG\&E's average rates were forecast based on inflation, expiring DWR contracts, new nuclear investments, hydro relicensing costs, PG\&E's open position energy costs, QF contract expirations, renewable power supply costs, and natural gas costs. Over the long run the average rate differential between PG\&E and SMUD is between $15 \%-20 \%$.

Operations, Maintenance, and Overhead Costs

Operations, maintenance, and overhead costs are an important factor in determining potential annexation benefits derived from economies of scale, i.e. spreading costs over more usage. R.W. Beck essentially assumed that there would be few economies of scale in annexation. However, SMUD completed a detailed analysis of all Business Units (Customer, Distribution, Energy Supply, and Corporate Services) to develop an estimate of the incremental costs of serving the annexed territory. Each business unit estimated the number of additional positions required and incremental labor costs were calculated at 2005 wage and salary rates. New costs were included to address impacts on the customer call center, meter reading, communications (phones), operations and outage restoration, and general district operations. In addition, Business Units estimated the increase in other direct costs, such as contract services and materials and equipment. All other direct costs were increased by 10-15\% over 2005 budget levels and indirect costs (administrative, training, office supplies, etc.) were estimated at approximately $4-5 \%$ in support of new direct positions. Allocated costs for technology, transportation and facilities were increased approximately 4% to account for additional vehicles and computer support.

Based on SMUD's analysis, there are significant savings due to economies of scale that should reach about $\$ 91$ million on a net present value basis relative to the costs included in the R.W. Beck study.

Overall Impact of SMUD Analysis

Based on the assumptions and analysis SMUD conducted, there are significant savings over the long run. The savings in the early years are modest due to exit fees, the levelized recovery of debt service costs, and relatively high power market and natural gas prices. Over the long run, these costs are mitigated (mainly through increases in customer equity) resulting in a relatively larger share of savings in the latter years. Overall, SMUD expects an average of 8% savings over a 20 year period on a net present value basis.

In addition to SMUD's base case analysis that produces an 8% savings ($\$ 180$ million NPV) over 20 years, SMUD also developed a sensitivity analysis to evaluate power supply, exit fee, and debt service options that would help mitigate annexation costs. SMUD's sensitivity analysis made the following assumptions:

- Power Supply: Rather than assuming that all Yolo energy sales come from a combination of new customer-owned generation and peaking contracts, a portion of the off-peak Yolo energy sales were assumed to come from Consumnes Power Plant ("CPP") at CPP's marginal cost of energy. In the first five years of annexation (2008-2013), SMUD expects that CPP will have surplus energy to sell in the off-peak hours. Rather than selling off-peak energy at market prices and incurring ISO fees for delivery, a portion of CPP's energy is assumed to be sold to Yolo area customers, reducing Yolo customers' cost of energy.
- Debt Service Costs: SMUD may have sufficient annual cash flow to invest in the Yolo electric system to avoid financing the acquisition with taxable debt. If SMUD were to invest cash flow in the Yolo electric system, cash flow would not be available to invest in SMUD's existing capital requirements. However, new tax-exempt debt could be issued to cover current capital needs. The net effect of investing cash flow in the Yolo electric system is to displace taxable debt with tax-exempt financing, lowering the cost of SMUD's debt service. In addition, SMUD's existing debt portfolio includes some variable rate debt at lower cost than fixed rate debt. Assuming that SMUD's new financing to cover the value of the Yolo assets will include some variable rate debt further lowers SMUD's debt service costs.
- Exit Fees: If annexation moves forward, SMUD will pursue acquiring all available exit fee exemptions for as much of Yolo customers' load as possible. Assuming more than 10% of Davis load and some new load will ultimately be exempt from a portion of the exit fees lowers the cost of serving the Yolo jurisdiction.

Given these changes, SMUD estimates that the NPV of savings over 20 years increases to about $\$ 240$ million and that PG\&E's rates will exceed SMUD's cost of serving Yolo customers by more than 3% every year.

SMUD staff calculated total annexation benefits as the difference between PG\&E rates and SMUD's cost of serving Yolo customers. PG\&E's rates are the rates Yolo customers would otherwise pay absent annexation, so any rates below PG\&E's generates benefits for use in paying off Yolo costs or for sharing between Yolo jurisdictions, customer classes, or with SMUD's existing customer base. To the extent SMUD's Yolo cost of service is below PG\&E's rates, benefits will accrue. SMUD staff estimates the Net Present Value (NPV) of the benefits over the 20 year period of the study to be about $\$ 180$ million in the Base Case (see Appendix D), and the NPV of benefits over 20 years to be about $\$ 240$ million in the Sensitivity Case (see graph below).

Benefits accrue in either case because SMUD's Yolo cost of service is below PG\&E rates over time. The primary reasons SMUD can serve Yolo County customers at a lower cost than PG\&E are:

1) Significant economies of scale in annexing the Yolo customers. SMUD's customer base will expand by 12% while costs are estimated to expand by only 6.7%. Please see the section of this report that discusses the O\&M and A\&G cost savings for more information.
2) Municipal financing and ownership of assets, including generation, distribution and transmission facilities is cheaper in the long run because SMUD uses cash flow produced by these assets to pay off the assets rather than paying shareholders.
3) Exit fees diminish over time but PG\&E's power costs continue to increase as a result of expiring long term contracts, investments in Diablo Canyon, hydroelectric relicensing, and renewable power costs.

SMUD staff expects that over time the Yolo customer cost of service will slowly decrease until a surcharge above SMUD's existing rates would no longer be required. The size of the surcharge, how long the surcharge may be in place, and how the benefits of the Yolo annexation will be divided will be decided by the SMUD Board.

Additional Sensitivities

SMUD staff reviewed the assumptions in this study that, if changed, could significantly change the 20-year net present value and/or the rate margin in the first five years. Acquisition price, natural gas prices, exit fees and interest rates were identified. Following is a discussion of each sensitivity.

Acquisition Cost - Each $\$ 10$ million change results in a change in net present value of $.5 \%$ and a $.5 \%$ change in the rate differential during the first five years. The potential range of this input is limited by the extensive review of the electric facilities in the annexation area. In addition, study costs were compared to benchmarks such as SMUD investment per customer, PG\&E's market to book and market to book of electric utility mergers. The range of uncertainty related to acquisition price is well within the potential benefits.

Gas price - For each increase in gas prices of $\$ 1 / \mathrm{MMBtu}$ over the entire study period, the net present value is decreased by 1.75% and the rate margin in the first five years is reduced by 2.5%. The most significant mitigation is that increases in gas prices will also increase PG\&E rates, although not at the same rate (as discussed in the power supply section). Price spikes in gas prices can be mitigated through a portfolio of gas contracts that expire at staggered dates.

Exit fee - There are two issues associated with exit fees. The first issue is whether or not they are applied to departing load. The second issue is the regulatory timing of adjustments such that the exit fee over-collects the above market costs of DWR contracts. Assuming the worst for the annexed loads mitigates the first issue. The second issue is short-term and might be influenced by vigorous participation in the regulatory proceedings.

Interest rates - Although higher interest rates could increase the annual cost of annexation, a permanent rise in rates would result in increases in PG\&E's capital cost that would offset much of the increase in the short run and actually increase the margin in the long run. If the increase were transitory, the increased cost would be limited to the call period on initial bonds. The short-term spike in interest rates would have to be over 200 basis points before it would have a significant impact on short-term margins.

Existing SMUD Customer Benefits

SMUD has completed an analysis to determine the benefits to existing SMUD customers that could accrue as a result of annexation. SMUD reviewed cash contributions that are currently made by existing SMUD customers as well as cash contributions expected to be made by Yolo customers. Generally, while Yolo customers' energy is expected to cost more than current SMUD customers' energy (for study purposes, no allocation to Yolo customers of existing low cost hydro or other resources has been assumed), the economies of scale savings on O\&M costs more than make up the difference. In
addition, Yolo customers' total debt service costs are expected to be lower than SMUD customers and decommissioning costs can be spread over more usage. Based on SMUD's analysis, Yolo area customers are expected to provide cash contributions in excess of existing SMUD customers throughout the study period as depicted in the table below. Yolo's cash contributions would equal about $\$ 20-\$ 25$ million over the 20 years of the study. Expected positive cash contributions by Yolo customers beyond that of SMUD's existing customers will help compensate SMUD's existing customers for providing Yolo customers rate certainty during the first five years of annexation.

Comparison of Cash Contribution				
	$2008-2012$		2013 - 2017	
S/MWH	SMUD	YOLO	SMUD	YOLO
Customer Revenue	98.72	96.35	98.72	96.35
Power Supply	44.02	54.19	50.89	61.27
O\&M + Public Good	21.66	11.81	22.4	11.93
Decomissioning	0.83	0	0.43	0
Debt Service	16.25	13.06	15.04	12.26
Cash Contribution	15.96	17.29	9.96	10.89

In addition to the cash contributions made by Yolo customers, there are additional benefits of more load over which SMUD's power portfolio can be diversified and economies of scale that should continue to accrue over time as a result of annexation.

TECHNICAL EVALUATION

SMUD staff reviewed the technical aspects of the R.W. Beck study to determine the validity and feasibility of serving the proposed annexation areas. The R.W. Beck study contains a comprehensive assessment of existing transmission and distribution facilities and inventories and is well documented for further evaluation. District staff validated R.W. Beck's technical methodology and in some cases made adjustments based on SMUD's experience, information available from public sources, and the approach SMUD would take to serve the proposed annexation area loads. District Staff believes that annexation of the areas addressed in the R.W. Beck study is technically feasible and would result in better utilization of SMUD's existing transmission system.

Transmission Options

R.W. Beck studied four annexation scenarios that addressed various load and jurisdictional options and transmission arrangements. R.W. Beck's methodology and assumptions in developing the four cases is well documented and extensive efforts were evident by R.W. Beck to identify and include as much inventory as possible despite the lack of cooperation from PG\&E. SMUD staff reviewed R.W. Beck's options and conducted numerous load flow, system protection and system studies to validate and determine the technical feasibility of R.W. Beck's approach and to evaluate potential alternatives. While all of R.W. Beck's options are technically feasible, SMUD staff further studied only the option of annexing all three cities along with portions of Yolo County. This option is the system configuration that would be most cost effective, lowers the cost of initial transmission interconnection, offers the greatest use of existing and new transmission facilities, is the most technically feasible, and has the most support from the jurisdictions.

This section details SMUD staff's review of the R.W. Beck study for technical feasibility and the costs associated with transmission lines and substations. Staff first looked at the adequacy of the transmission system and then examined the physical modifications necessary to correct any inadequacies found in the transmission system. SMUD staff also reviewed two options for serving the proposed annexation area; 1) wheeling energy through PG\&E/CAISO and 2) interconnection of transmission loads with SMUD's existing 115 kV system.

The California Independent System Operator (CAISO) Option

R.W. Beck assessed the use of the California Independent System Operator (CAISO) as the Transmission and Control Area service provider for the annexation area. R.W. Beck assumes SMUD would acquire the existing substations that serve the proposed annexation area under the CAISO option. This option requires SMUD to install meter sets at all of the transmission line terminals. It would also require SMUD to wheel power over PG\&E's existing transmission lines. SMUD staff estimates a metering set at each terminal would cost between $\$ 90,000$ and $\$ 150,000$ each, for a total cost of about $\$ 450,000-\$ 750,000$ for all affected substations. In addition to the cost of new metering, SMUD would also pay significant on-going costs for CAISO services and wheeling charges.

SMUD staff does not recommend the CAISO approach as changing tariffs, regulations, and reliability provide significant uncertainty relative to SMUD's approach of integrating Yolo loads with SMUD's existing transmission system. In addition, the costs associated with transmission and control area services are significant and do not contribute to stable rates or reliable services in the long term. Future upgrades needed on the transmission system may prove difficult as PG\&E will have little incentive to maintain and improve the transmission system to SMUD's standards. At worst, the CAISO option can serve as an interim bridge while SMUD constructs and reconfigures transmission lines.

Acquire and Build the Transmission System Option

SMUD's analysis determined reconfiguration of existing PG\&E and SMUD transmission lines would be the most cost effective and technically viable method of interconnecting certain Yolo load with the existing SMUD 115 kV transmission system. Specifically, the Brighton-Davis line would be converted to Hedge-Davis; Rio Oso-West Sacramento and Brighton-West Sacramento would be re-terminated as North City-West Sacramento and Hurley-West Sacramento respectively. In addition, SMUD staff determined that a new double circuit line (approximately 18 miles) from Elverta Substation to existing Woodland substation would be required. Staff has evaluated the technical and real estate rights-of-way issues involved in building the new line and believes the construction of the new line would take approximately two to three years including environmental and other permitting requirements. New construction and reconfiguration of the existing transmission system would not require a significant lead-time and can be completed by 2008. The cost of reconfiguring existing lines and constructing the new double circuit line to Woodland would be less costly than the transmission alternatives identified in the R.W. Beck report.

The proposed SMUD transmission configuration leverages existing capacity and infrastructure as well as minimizes the stranding of PG\&E transmission facilities. For example, R.W. Beck proposed an additional 200 MVA $230 / 115 \mathrm{kV}$ transformer at the Hurley Substation. However, SMUD staff determined the new transformer is not needed based on existing capacity and planned changes on the $230 / 115 \mathrm{kV}$ system, which include a relocation of a $230 / 115 / 69 \mathrm{kV}$ transformer from the Elk Grove

Substation to the Elverta Substation in 2005-2006. The configuration under the SMUD Scenario enables PG\&E to utilize and continue to serve its adjoining loads with the same or improved reliability. SMUD studies also demonstrated potential benefits to PG\&E's transmission system as a result of reduced capital costs for transmission improvements associated with regional loads and the Rio Oso and Vaca-Dixon Substations. The following chart summarizes the differences between R.W. Beck's Scenario 4 and the SMUD Scenario.

Differences Between R.W. Beck and SMUD Scenario

	Transmission lines to be acquired from PG\&E	Stranded PG\&E transmission lines	Transmission ines to be built by SMUD
R.W. Beck's Scenario 4	66.31 miles	41.84 miles	16 miles
SMUD Scenario	62.07 miles	10.66 miles	21.5 miles

In summary, the SMUD Scenario would require the District to acquire fewer transmission lines from PG\&E. It would also mean SMUD would need to build over five additional miles of transmission lines, however, significantly fewer PG\&E transmission lines would be stranded under the SMUD Scenario.

Transmission System Evaluation

A transmission system analysis was conducted to determine the feasibility of the SMUD Scenario and identify any transmission upgrades required to maintain reliability. Transmission studies indicate reconfiguration of the transmission system should have no adverse impact on the PG\&E or SMUD transmission systems. A future interconnection with PG\&E on the 115 kV system is technically feasible and may serve to enhance regional transmission capabilities and reliability for both SMUD and PG\&E. SMUD staff will continue to explore ways to maximize the final transmission configuration in a manner that best meets the needs of the District.

Annexing the loads of West Sacramento, Davis, Woodland, and portions of Yolo County into the District's control area by 2008 would require the following additions or modifications to SMUD's transmission facilities:

1) Reconductor the existing PG\&E 115 kV line, West Sacramento-Deepwater TapDavis line
2) Construction of two new 115 kV lines; Elverta-Woodland (~ 18 miles each)
3) Move a $230 \backslash 115 \mathrm{kV}$ transformer bank from Elk Grove to Elverta
4) Develop a new Hedge-Davis 115 kV line utilizing most of PG\&E's existing Brighton-Davis line
5) Develop a new Hurley-Deepwater-West Sacramento line using most of PG\&E's existing Brighton-Deepwater-West Sacramento line (partial reconductoring would be required)
6) Add a North City-West Sacramento line using a short portion of PG\&E exiting Rio Oso-West Sacramento line eliminating the Hurley-North City \#1 line
7) Addition of 25-100 MVAr shunt capacitors at Davis and Woodland

SMUD staff found no transmission configuration issues that would prevent serving the proposed annexation area. Appendix A contains Load Flow Tables.

Startup Costs

The following table shows the startup costs for SMUD to build the proposed SMUD transmission configuration using SMUD's unit cost. Staff included R.W. Beck's unit costs for comparison as back up to the SMUD estimate. Cost related to acquiring the PG\&E facilities that will be needed for the SMUD Scenario are discussed later.

SMUD Scenario Startup Costs

Description	Status	Quantity	Unit	RW Beck		SMUD	
				Unit Cost	Extended Cost	Unit Cost	Extended Cost
Steel Poles, Double circuit, 954 AAC							
Magnolia	New	18.00	Mi	\$598,500	\$10,773,000	\$568,336	\$10,230,048
Fiber Optic Communication	New	18.00	Mi			\$47,500.	\$855,000
Close to Elder Creek-Hedge							
Steel Pole, Single circuit, 954 AAC							
Magnolia	New	3.5	Mi	\$565,000	\$1,977,500	\$568,336	\$1,989,176
Elverta Substation							
115 kV Line Bays	New	1.00	each	\$298,480	\$298,480	\$286,825	\$286,825
230 kV Bays	New	1.00	each	\$408,816	\$408,816	\$318,825	\$318,825
115 kV Bays	New	1.00	each	\$298,480	\$298,480	\$286,825	\$286,825
230/115 transformer 200 MVA	New	1.00	each			\$1,780,720	\$1,780,720
230/115 transformer 200 MVA		200.00	MVA	\$25,000	\$5,000,000		
transformer pad and structure	New	1.00	each			\$180,720	\$180,720
Hedge Substation							
115 kV Line Bay	Existing	1.00	each			\$286,825	\$286,825
Startup					\$18,756,276		\$16,214,964

System Protection

The SMUD Scenario was also reviewed for system protection issues. In order to perform fault analysis, SMUD staff assumed the following changes:

1) Added a 230 kV transmission line from O'Banion to Natomas (25 miles)
2) Added a $230 / 115 \mathrm{kV}, 140 \mathrm{MW}$ transformer at Elverta
3) Added two 115 kV transmission lines from Elverta to Woodland (16 miles each)
4) Looped the Hurley-North City 115 kV line through West Sacramento
5) Modified the Davis-Brighton 115 kV line to the Davis -Hedge line (5 miles added to the existing line)

SMUD staff found no system protection issues that would prevent serving the proposed annexation area.

SMUD's Load Serving Capacity and Capability

SMUD has an existing 115 kV load of approximately 400 MVA , but transformer capacity of more than 800 MVA. Therefore, SMUD has adequate installed transformer capacity for the additional load that would be created through the requested Yolo annexation.

Although R.W. Beck did not address regional and local load serving capability, staff studies determined that Cosumnes Power Plant (500 MW) and Roseville Energy Park (150 MW) will need to be on line prior to annexation to comply with regional load serving and Control Area operational requirements. A future 230 kV transmission line to Western Area Power Administration's (WAPA) O'Banion Substation from Natomas/Elverta Substation will further enhance the SMUD and regional system performance. Staff also confirmed R.W. Beck's assessment that local transmission improvements such as line re-conductoring and breaker replacements may be required to address contingencies as a result of load growth and deficient PG\&E facilities in the area.

Validation of Transmission Replacement Cost New (RCN)

In order to generate the costs for the SMUD Scenario, SMUD staff created transmission line and substation unit costs and the opinions of value for transmission rights-of-way and property for substation sites. Several transmission lines may use the same right-ofway. Therefore, right-of-way costs in each of the scenarios have been totaled and added to the total construction costs for the SMUD Scenario. A summary table of the right-ofway costs, along with the opinions of value can be found in Appendix B.

SMUD staff developed the transmission unit cost by 1) comparing transmission costs from other utility sources, 2) using SMUD's experience with similar materials and construction, 3) estimating labor costs, and 4) pricing materials for construction.of transmission facilities. SMUD has recent experience with substation construction and used this experience as the basis for these unit costs. Appendix C lists the unit costs for substation construction.

Transmission Lines Replacement Cost New

The table bellows shows the transmission system replacement costs for the facilities SMUD will need to acquire from PG\&E for the SMUD Scenario. SMUD staff used R.W. Beck's unit costs for comparison as back up to the SMUD estimate.

Replacement Cost New, SMUD Scenario

Description	Status	Quantity	Unit	RW Beck		SMUD	
				Unit Cost	Extended Cos	Unit Cost	Extended Cost
W. Sacramento-Deepwater Tap 2							
Steel Poles, Double circuit, 715.5 AAC Violet Deepwater Tap 2-Hurley	Existing	1.04	Mi	\$570,000	\$592,800	\$56,8336	\$591,069
Lattice, Double circuit, 397.5 AAC Canna (50\% of cost)	Existing	5.00	Mi	\$292,000	\$1,460,000	\$551,603	\$2,758,615
North City-Tap 2							
Lattice, Double circuit, 397.5 AAC Canna (50% of cost) Deepwater Tap 1-West Sacramento	Existing	5.00	Mi	\$292,000	\$1,460,000	\$551,603	\$2,758,615
Wood, assumed reconductored to 715.5 AAC							
Violet	Existing	1.76	Mi	\$405,000	\$712,800	\$338,135	\$595,118
Deepwater Tap 1-Davis							
Wood, single circuit, 715.5 AAC Violet Deepwater Tap 1\&2- Deepwater	Existing	10.89	Mi	\$405,000	\$4,410,450	\$338,135	\$3,682,290
Steel Poles, Double circuit, 397.5 AAC Canna P.O. Tap- Post Office	Existing	2.39	Mi	\$554,000	\$1,324,060	\$568,336	\$1,358,323
Wood, Single circuit, 397.5 AAC Canna Davis-Barker Jct	Existing	0.66	Mi	\$397,000	\$262,020	\$338,135	\$223,169
Wood, Single circuit, 715.5 AAC Violet Barker Jct- Close to Elder Creek	Existing	9.85	Mi	\$405,000	\$3,989,250	\$338,135	\$3330630
Lattice, Single ci Close to Elder Creek- Brighton	Existing	15.96	Mi	\$500,000	\$7,980,000	\$350,724	\$5,597,555
Lattice, Single circuit, 397.5	Stranded	2.5		\$500,000	\$1,250,000	\$350,724	\$8,766,810
Davis-Hunt Tap							
Wood, Single circuit, 71 Hunt Tap-Woodland Bio Mass	Existing	1.09	Mi	\$405,000	\$441,450	\$338,135	\$368,567
Wood, Single circuit, 715.5 AAC Woodland Bio Mass-Woodland	Existing	9.04	Mi	\$405,000	\$3,661,200	\$338,135	\$3,56,740
Wood, Single circuit, 715 Hunt Tap-Hunt	Existing	1.52	Mi	\$405,000	\$615,600	\$338,135	\$513,965
Wood, Single circuit, 715.5 AAC Violet Woodland-Close to County Rd 18c	Existing	0.06	Mi	\$405,000	\$24,300	\$338,135	\$20,288
Lattice, Double circuit 715.5 Woodland Poly Tap-Woodland Poly	Existing	2.50	Mi	\$600,000	\$1,500,000	\$551,603	\$1,379,008
Wood, Single circuit, 4/0 alliance Close to County Rd 18c-Rio Oso Tap	Existing	0.31	Mi	\$397,000	\$123,070	\$338,135	\$104,822
Lattice, Double circuit 715.5	Stranded	8.16	Mi	\$600,000	\$4,896,000	\$551,603	\$4,501,080
Right of Way Costs Total					\$34,703,000		\$31,715,465
					-		\$7,418,568
					\$34,703,000		\$39,134,033

To determine total costs, an additional $\$ 7,418,568$, (PG\&E's estimated cost for the right-of-way) was added to the SMUD estimate for a total of $\$ 39,134,033$. The District would save approximately $\$ 20,000,000$ by using the alternative transmission configuration developed by staff. Almost $\$ 15,000,000$ of these savings comes from eliminating the stranded cost associated with the Rio Oso-West Sacramento line.

Transmission Substations Replacement Cost New (RCN)

R.W. Beck captures the replacement costs for substations in the proposed annexation area in the distribution section of its study.

PG\&E designs and constructs its substations differently than SMUD, which results in differences in unit costs. SMUD generally does not use circuit switchers for transformer switching and clearing, but instead uses circuit breakers. PG\&E uses circuit switches for switching and clearing of its transformers. PG\&E also uses outdoor switchyards for 12 kV in its substations. SMUD uses metal clad switchgear for 12 kV in SMUD's substation. PG\&E builds substations with greater capacity and builds fewer substations for a given load. SMUD builds substations with a smaller capacity and builds more substations for a given load to increase reliability and operational flexibility in switching during outages. These differences impact substation costs.

West Sacramento Substation

The West Sacramento Substation has three 115 kV line positions and three transformers. The line positions have circuit breakers and the transformers have circuit switchers. The table below shows the circuit breakers' cost estimated at $\$ 296,745$. For estimating a circuit switcher, the table shows one half a circuit breaker. Three circuit breakers plus three half circuit breakers results in a quantity of 4.5 for the circuit breakers. The land costs are based on the opinion of value from SMUD Real Estate Services.

West Sacramento Substation RCN

Description	Unit Cost	Number of Units	Extended Costs
115 kV Breaker Position	$\$ 296,745.00$	4.5	$\$ 1,335,352.50$
Transformer, 30MVA	$\$ 586,020.00$	3	$\$ 1,758,060.00$
12kV Breaker, protection,			
disconnects	$\$ 50,240.00$	11	$\$ 552,640.00$
Civil Construction--new substation			$\$ 640,000.00$
Support Structures (115kV		$\$ 100,000.00$	
Structures and Footings)		$\$ 600,000.00$	
Land		$\$ 4,986,052.50$	

Deepwater Substation

The Deepwater Substation has two line positions without circuit breakers or circuit switchers and one transformer position without a circuit breaker or circuit switcher. One quarter of the cost for a circuit breaker was used to estimate the cost of these line positions. This results in the .75 circuit breaker appear in the table below.

Deepwater Substation RCN

Description	Unit Cost	Number of Units	Extended Costs
115 kV Breaker Position	$\$ 296,745$	0.75	$\$ 222,558.00$
Transformer, 20MVA	$\$ 413,520$	1	$\$ 413,520.00$
12 kV Breaker, protection, disconnects	$\$ 50,240$	2	$\$ 100,480.00$
Civil Construction--new substation			$\$ 640,000.00$
Support Structures (115kV Structures			$\$ 100,000.00$
and Footings)		$\$ 370,500.00$	
Land		$\mathbf{\$ 1 , 8 4 7 , 0 5 8}$	

Davis Substation

Davis Substation has three transmission line positions and three transformer positions. This results in 4.5 circuit breakers number in the table below. The Davis Substation also has two different transformer sizes.

Davis Substation RCN

Description	Number of		
	Unit Cost	Units	Extended Costs
115 kV Breaker Position	$\$ 296,745.00$	4.5	$\$ 335,352.00$
Transformer, 30MVA	$\$ 586,020.00$	1	$\$ 586,020.00$
Transformer, 45MVA	$\$ 768,760.00$	2	$\$ 1,537,520.00$
12kV Breaker, protection, disconnects	$\$ 50,240.00$	13	$\$ 653,120.00$
Civil Construction--new substation			$\$ 640,000.00$
Support Structures (115kV Structures			$\$ 100,000.00$
and Footings)		$\$ 675,000.00$	
Land		$\mathbf{\$ 5 , 5 2 7 , 0 1 2 . 5 0}$	

Woodland Substation

Woodland Substation has three line circuit breakers and three circuit switchers. The table below shows 4.5 circuit breakers on the basis of one circuit breaker for each actual circuit breaker and one half circuit breaker for each circuit switcher.

Woodland Substations RCN

Description	Unit Cost	Number of Units	Extended Costs
115 kV Breaker Position	$\$ 296,745.00$	4.5	$\$ 1,335,352.50$
Transformer, 40MVA	$\$ 768,760.00$	3	$\$ 2,306,280.00$
12kV Breaker, protection,			
disconnects	$\$ 50,240.00$	14	$\$ 703,360.00$
Civil Construction--new substation			$\$ 640,000.00$
Support Structures (115kV Structures		$\$ 100,000.00$	
and Footings)		$\$ 135,000.00$	
Land		$\mathbf{\$ 5 , 2 1 9 , 9 9 2 . 5 0}$	

Plainfield Substation

Plainfield Substation has a single line position without either a circuit breaker or a circuit switcher. The transformer has a capacity of 12 MVA and has fuse protection. The 60 kV system serves the transformer so SMUD will replace the transformer with a transformer that has a 115 kV high voltage winding.

Plainfield Substation RCN

Description	Unit Cost	Number of Units	Extended Costs
115 kV Breaker Position	$\$ 296,745.00$	0.25	$\$ 74,186.25$
Transformer, 12.5MVA	$\$ 318,520.00$	1	$\$ 318,520.00$
12kV Breaker, protection, disconnects	$\$ 50,240.00$	2	$\$ 100,480.00$
Civil Construction--new substation			$\$ 160,000.00$
Support Structures (115kV Structures		$\$ 50,000.00$	
and Footings		$\$ \mathbf{\$ 9 7 7 , 6 6 6 . 2 5}$	

Distribution Summary

Staff confirmed R.W. Beck's assessment and determined that the distribution system can be readily annexed and incorporated as part of the SMUD service area. No significant technical challenges or obstacles were identified with annexation.

The distribution system is primarily radial overhead and underground lines with a mix of construction methods. R.W. Beck developed detailed lists of facilities and equipment inventories consistent with prudent utility practices. Staff compared R.W. Beck equipment and inventory ratios against the SMUD system and found the ratios to be consistent with SMUD's ratios.

In certain cases, staff applied SMUD engineering standards and construction practices and made adjustments to inventory and facility designs. Some variances were identified in meter inventories and underground services. In addition, staff observed that PG\&E and SMUD design and construction practices differ. SMUD distribution design and construction practices tend to favor large feeder lines enabling loads to be switched from one source to another whereas PG\&E tends to use smaller capacity lines running further from source substations. SMUD's approach requires larger upfront capital outlays whereas PG\&E's approach generally requires significant capital investment to serve added load or to handle contingencies, outages, or equipment failures. Both practices are acceptable but produce different reliability outcomes.

Staff reviewed R.W. Beck's forecast of annexation area loads and determined that the projections used are consistent with SMUD's experience in Sacramento. From 2004 through 2013, Beck assumed the annual growth for the annexed area to be approximately 5.2 percent; in comparison SMUD's projected annual load growth is estimated to be 2.7 percent. Although annexation area growth is higher, it does compare to high growth areas within the District. The area proposed for annexation has a similar ratio of urban to rural areas to the District's current ratio. The definition used for urban area is the area within the city limits. SMUD has a ratio of 25% urban to 75% rural. The proposed area has a mix of 23% urban to 77% rural.

Distribution Replacement Cost New (RCN)

A comparison between the distribution RCN costs developed by R.W. Beck and SMUD show R.W. Beck in general is lower in unit cost. R.W. Beck used costs based upon building the system by contract and building the entire system at once as a large construction project. SMUD's costs were developed for building parts in small increments. The SMUD underground costs include different construction methods and equipment than those included in the R.W. Beck unit costs. The underground differences and different substation equipment choices are the primary reasons for the SMUD unit costs to be higher than the R.W. Beck study costs. Additionally, R.W. Beck did not sufficiently account for underground service drops and meters in the cost analysis. SMUD staff included an additional 23,684 underground service drops and meters based on information provided by PG\&E after the R.W. Beck study was released. SMUD also included $\$ 1.8$ million for the street light system that is owned by PG\&E. A comparison between the distribution RCN developed by R.W. Beck and SMUD indicate R.W. Beck's estimates are reasonable.

Substation Replacement Cost New (RCN)

R.W. Beck located each PG\&E substation within the proposed annexation area. The substations were identified as West Sacramento, Deepwater, Davis, Woodland, and Plainfield. Three other 115 kV substations are customer-owned substations. These include the substations associated with Tyco Plastics, Hunt, and Post Office.
R.W. Beck conducted an inventory of the equipment within the substation facilities. Although R.W. Beck was not provided access to the facilities, R.W. Beck used bucket trucks to view the equipment within the substation walls. As a result, the age and ratings of the equipment was estimated and valued.

The PG\&E substations, with the exception of Plainfield, are 115 kV to 12 kV substations. The Plainfield substation is connected to only the 60 kV . R.W. Beck's study included the Plainfield substation in the annexation area. District staff reviewed the inclusion and determined the load can be served from existing or future $115 / 12 \mathrm{kV}$ substations. In other words, the actual Plainfield substation would not be acquired, only the load served by the substation. Staff recommends that a new 115 kV substation be installed near the existing 115 kV line between Davis and Woodland. This new substation, along with new distribution lines, would connect to the feeders currently served by the Plainfield Substation. The new substation would also have feeders that will support North Davis and Southeast Woodland.

The Davis Substation has a $115 \mathrm{kV}-60 \mathrm{kV}$ transformer that is connected to the 60 kV system that supports the UC Davis substation south of town. This transformer would not be included in the annexation. PG\&E's 60 kV sub-transmission and related substation facilities and the University of California, Davis load and facilities were not valued or included in SMUD's study.

Overhead Inventory

R.W. Beck's overhead inventory was appropriate for the equipment identified. When the quantities were normalized for square miles of territory, numbers of meters, and MW-Hrs sold, the quantities compare well with the same measures within the SMUD distribution system. While the exact sizes of conductors, transformers, and substation equipment could not be validated, the assumptions used give reasonable estimates. Additionally, the maps R.W. Beck submitted show the overhead lines in the proper areas and arrangements.

Miles of Overhead Lines

The ratio of miles of overhead line per square mile in the proposed annexation area is less than the ratio within the existing SMUD service area. The smaller amount of lines can be expected due to the fact the Yolo Causeway reduces the amount of area for development. Also, the rural area within Yolo County is heavily agricultural and lightly populated, resulting in lower amounts of overhead conductors being installed.

Miles of Overhead Primary Conductors

	SMUD	Proposed Annexation Area
Miles of OH Primary Lines	3036.8 Miles	416.3 Miles
Miles of OH Secondary	$1,759 \mathrm{Miles}$	55.18 Miles
Service Area	$900 \mathrm{Sq}$. Mi	$190 \mathrm{Sq} . \mathrm{Mi}$
Ratio of Primary to Secondary	0.58	0.13
Ratio Area to OH Lines	3.37	2.19
Ratio Area to Secondary	1.954	0.29

Overhead Secondary Circuits

Secondary circuits are the conductor between the transformer and the service drop point. R.W. Beck estimated the mileage of overhead secondary circuits based on the number and size of the pole bolt transformers. R.W. Beck estimates the average length of overhead secondary to be 264 feet in both the rural and urban areas. SMUD has an average of 128 feet for urban areas and 134 feet for rural areas. The SMUD average length for overhead secondary is about one half of the length estimated by R.W. Beck. R.W. Beck estimated the length of secondary based on the number and sizes of the transformers.

The ratio of overhead secondary to overhead primary shows R.W. Beck has less than half the ratio found in SMUD's territory. Other ratios such as the ratio of secondary to the number of meters and ratio of secondary to number of transformers are less than half that found in the District. Without access to the PG\&E maps, SMUD staff thinks a reasonable estimate for the secondary length would be to double the length documented by R.W. Beck. Therefore, staff used a length of 110.36 miles in its calculations.

Overhead Secondary Conductor

	SMUD	Proposed Annexation Area
Miles of OH Secondary	1,759 Miles	55.18 Miles
Miles of Feeder	$4,125 \mathrm{Miles}$	442.94 Miles
Number of Meters	553,337	41,465
Number of PB XFMRs	33,666	3,469
Ratio of Sec to Feeder	42.6%	12.5%
Ratio of Sec to Meters	0.3%	0.1%
Ratio of Sec to XFMR	5.2%	1.6%

Poles

The R.W. Beck study included 10,560 poles in the system inventory (excluding the Davis 1107). SMUD has an average of about 35 poles per mile of overhead lines (feeder and lateral.) Using R.W. Beck's number of poles and overhead line mileage, there are 25.66 poles per mile.
R.W. Beck identifies the span lengths for 12 kV feeder, laterals, and secondary for both urban and rural areas. The R.W. Beck feeder span lengths are shorter than those found within the District. However, rural lateral and secondary span lengths are significantly longer. When the feeder and secondary distances are divided by the span lengths, the number of poles R.W. Beck used is correct.

Number of Poles in the Annexation Area

	SMUD	Proposed Annexation Area
Miles of OH Feeder (All Distribution Voltages)	4,125 Miles	416.3 Miles
Average Feeder Span Length	248.83 Feet	211 Feet
Number of poles needed by feeder span length	87,529	10,417
\# of Poles is Area	145,000	10,560
\# of Poles Per Mile for OH	35.15	25.66

Table of Span Lengths

	SMUD	Proposed Annexation Area
Feeder Span Length - Urban	249 Feet	211 Feet
Feeder Span Length - Rural	223 Feet	211 Feet
Lateral Span Length - Urban	249 Feet	132 Feet
Lateral Span Length - Rural	223 Feet	317 Feet
Secondary Span Length - Urban	114 Feet	264 Feet
Secondary Span Length - Rural	120 Feet	264 Feet

Overhead Transformer Inventory

R.W. Beck inventoried the overhead transformers by walking each circuit and line and counting the individual transformers. The transformer sizes were estimated when the kVA rating was not visible or readable from the ground.
R.W. Beck identified 3,439 transformer banks, consisting of 4,445 individual transformer tanks. R.W. Beck reports there may be some transformers that were not inventoried due to backyard construction. SMUD staff thinks R.W. Beck's number is valid because in a SMUD field inspection, poles and backyard transformers were readily visible from the street.

Table of Transformers

	SMUD	Proposed Annexation Area
\# of OH XFMRs Banks	33,666	3,469
\# of OH XFMR Tanks		4,445
Miles of 12 kV OH Feeder	3036.8 Miles	442.94 Miles
Ratio of XFMR to Feeder	8.16	7.83

Service Drops

R.W. Beck estimated the number of service drops based on the number and the size of the transformers. However, the total number of service drops does not represent the number of customers because there are customers served by underground service drops. This issue is discussed further in the underground distribution network section. Additionally, one service drop may serve multiple meters. R.W. Beck identified single- and threephase overhead service drops. R.W. Beck reported the proposed annexation area averages three more services per transformer than SMUD. The sizes of the transformers may average a larger size than SMUD's average. R.W. Beck also found the area has a lower number of services per mile of overhead feeder.

Table of Overhead Service Drops

	SMUD	Proposed Annexation Area
\# of OH XFMR	58,375	3,939
\# of Services	421,617	40,471
Avg XFMR size	31.96	
Miles Of OH	3036.8	416
XFMR/Mile of OH	19.2	9.5
Services/XFMR	7.22	10.2
Services/OH Miles	138.8	97.29

Overhead Switches

R.W. Beck estimated the number of overhead switches by conducting a complete inspection of the overhead distribution lines. R.W. Beck gathered the data directly from field observations. The quantity of switches compares well with the quantities within the District. PG\&E builds overhead lines for longer distances between substations and has fuses on most laterals off of the main line feeders. The number of overhead switches and cut outs identified by R.W. Beck is reasonable.

SMUD identifies overhead switches as three-phase gang operates and single-phase switches. The single-phase switch may also be referred to as a solid blade cut out. R.W. Beck provided a count of the overhead three-phase switches and cutouts / fuses. The cutouts / fuses are assumed to be single-phase devices installed in multiples and counted as a single device.

Overhead Switches

	SMUD	Proposed Annexation Area	PG\&E
\# of OH Switches	6,399	381	567
\# of 1 Pole C/O	14,832	1216	1,064
Miles Of OH	3036.8	416	537
\# Switches / Mile	1.55	.92	1.06
\# of cutouts/Mile	3.6	2.9	1.98

Meters

R.W. Beck identified 40,682 meters in its report. Subsequent information received indicates the correct number of meters is 70,000 in the proposed annexation area. The uncounted meters appear to be associated with the unreported underground services.

Reclosers, Capacitor banks and Voltage Regulators

R.W. Beck identified 189 capacitor banks and 8 voltage regulators. This quantity of capacitors and regulator is consistent for the length of lines. The feeder load profiles performed by R.W. Beck indicate these capacitors and voltage regulators provide the appropriate voltage and power factor support for the system.

Streetlights

R.W. Beck did not inventory the streetlight systems within the proposed annexation area. Subsequent information indicates the streetlight systems are owned by PG\&E and would be included in the acquisition. SMUD staff estimates the cost of the streetlights to be $\$ 1.8$ million.

Underground Distribution Network Layout Estimation

Because PG\&E did not provide circuit maps for R.W. Beck to use to determine the underground circuit arrangement, R.W. Beck developed a design that modeled PG\&E's current design practices. The R.W. Beck design was based on the inventory of identified pad mounted and subsurface transformers and switches. The exact configuration of the underground system cannot be determined without PG\&E's maps for the system, but reasonable estimates have been made. The configuration developed by R.W. Beck identifies the major component locations and provides a sound basis for the system evaluation.

PG\&E appears to have used underground systems only within the city limits and isolated subdivisions within the proposed annexation area. If spare facilities such as spare ducts or conductors in the underground system exist, these facilities would not be included in the estimate. Based upon the ratio of secondary to primary underground facilities, the network developed by R.W. Beck correlates well with SMUD's system.

One quantity not identified by R.W. Beck was the number of underground services. After the study was released, PG\&E reported it has approximately 24,239 services and 70,000 meters in the proposed annexation area. To be conservative, SMUD used the PG\&E number in its estimates.

In summary, the R.W. Beck inventory is appropriate. When the quantities are normalized for square miles of territory, numbers of meters, and MW-Hrs, sold, the quantities compare well with the same measures within the whole SMUD distribution system. While the exact sizes of conductors, conduit system, transformers, and substation equipment cannot be known without PG\&E's cooperation, the assumptions used by R.W. Beck are reasonable estimates.

Underground Facilities

	SMUD	Proposed Annexation Area
UG Primary	5,530 Miles	259.65 Miles
UG Secondary	$2,839.7$ Miles	140.37 Miles
UG Service		
Risers	15,314	673
PM XFMRS	19,758	1,489
Subsurface XFMR		966
\% Primary to Secondary	51%	54%

While the load flows and voltage drop calculations for the in-ground facilities are unknown, R.W. Beck's estimate is reasonable. The network analysis performed by R.W. Beck would be a good predictor of system operation during peak load periods for voltage drops, flicker and for fault duties. If the area is annexed, SMUD would run load flows and voltage drop calculations to identify any issues that would need to be addressed. As PG\&E has similar limits for both overload and voltage drop, it is likely there would be few significant deficiencies.

Separation, Startup, and Ongoing Capital Costs

R.W. Beck's estimated separation and startup costs are in line with staff's estimates. R.W. Beck separation costs included the cost to disconnect from the PG\&E transmission and distribution systems and install metering at the remaining connection points. R.W. Beck assumed a severance cost of 1% of the acquisition cost to cover the minor physical system severance. The SMUD scenario modifies the separation points and changes the number of meters to be installed. The typical separation requires removing a jumper or switch blades at the open point. The metering would include the required instrument transformers and meters to monitor power flow for billing.
R.W. Beck's startup cost estimate included substation transformers and circuit breakers to be installed at transmission and distribution facilities. R.W. Beck also included costs in 2013 for additional transmission line capacity. R.W. Beck's startup cost estimate includes installation of new distribution and transmission facilities, obtaining system information and records from PG\&E.

The SMUD staff estimate includes the cost of installing two new transformers and transmission and distribution upgrades. The estimate also includes the acquisition and installation of additional communication facilities, costs of incorporating the annexed facilities into SMUD's Geographical Information System, Outage Management System, and SAP.
R.W. Beck estimated ongoing capital requirements to be 1% of acquisition costs. SMUD's approach was to use its 2005 budget to estimate ongoing capital upgrades, which includes costs for cable replacement, cable injection, pole replacements, pole reinforcements, new services (net of Rule 15 and Rule 16 revenues), and local agency improvements. This resulted in a slightly lower annual capital requirement mainly due to R.W. Beck not including developer contributions as an offset to annual capital requirements.

	R.W. Beck (In \$ Millions)	SMUD (In \$ Millions)	Variance (In \$ Millions)
Separation Cost	$\$ 2$	$\$ 2.3$	$+\$ 0.3$
Startup Cost	$\$ 45^{*}$	$\$ 40$	$-\$ 5$
Ongoing Capital	$\$ 5.2$	$\$ 3.3$	$-\$ 1.9$

*Additional $\$ 6$ million of 2013 to include transmission enhancements such as line re-conductor and capacitor installs

Summary Valuation of Transmission and Distribution System

R.W. Beck identified three methodologies to establish the value of the annexation area transmission and distribution systems. SMUD staff reviewed and verified these methodologies and recommends use of R.W. Beck's Cost Approach as the most appropriate valuation methodology. The Cost Approach estimates system value based on calculating Original Cost (OC) and Replacement Cost New (RCN) and then applying straight line depreciation to determine Original Cost Less Depreciation (OCLD) and Replacement Cost New Less Depreciation (RCNLD). Depreciation reduces the value of the system due to its age and condition.

SMUD staff validated R.W. Beck's system valuation by confirming inventory quantities, type of construction, condition and age of facilities, and unit costs of the equipment and installation. SMUD staff completed field inspection and condition assessments of distribution and transmission lines as well as independent assessment of real estate and right-of-way costs. SMUD valued real estate and rights-of way at market value where R.W. Beck's real estate costs were not segregated and may have been depreciated. Based on staff's verification and analysis, staff's estimate of the transmission, distribution, and overall system value for the annexation area is as follows:

	RW Beck (In \$ Millions)	SMUD (In \$ Millions)	Difference (In \$ Millions)
Transmission	$\$ 2$		
$O C L D$	$\$ 17$	$\$ 3.6$	$+\$ 1.6$
$R C N L D$			$-\$ 2.3$
Distribution	$\$ 53$	$\$ 80$	$+\$ 27$
$O C L D$	$\$ 91$	$\$ 115.7$	$+\$ 24.7$
$R C N L D$	$\$ 55$	$\$ 84$	$+\$ 29$
Total System	$\$ 108$	$\$ 130$	$+\$ 22$
$O C L D$			
$R C N L D$			

R.W. Beck's estimates for RCNLD on the transmission system were higher due to higher unit costs and more stranded facilities as compared to an alternative scenario developed by SMUD staff. In addition, higher costs for real estate and rights-of-way were offset by lower costs on transmission equipment resulting in a reduction in transmission RCNLD.

However, SMUD's distribution costs relative to R.W. Beck's are higher. Staff increased the number of meters, service drops, and adjusted for higher cost of some underground facilities including feeders. The changes made by SMUD staff were based on available public information and comparisons of SMUD's system and unit costs. To be conservative and given the limited information provided by PG\&E, distribution costs were increased to better reflect SMUD's construction standards and unit costs. These changes in assumed costs and construction standards result in an increase in distribution system OCLD and RCNLD.

Comparison of SMUD Summary to R.W. Beck's Report

SMUD staff developed the table below to compare the costs of the SMUD Scenario with the R.W. Beck Case 4 Scenario. The Case 4 Scenario was chosen because it was the Case that included all three cities and the surrounding portions of Yolo County. To be conservative, SMUD staff used the Replacement Cost New figures even though SMUD believes the total cost for the system will fall somewhere between the Original Cost New Less Depreciation and Replacement Cost New Less Depreciation estimates. It should be noted the Replacement Cost New Less Depreciation figure provides the high-end value for the system.

Description	Beck Case 4 Estimates	SMUD Scenario Estimates	Difference
Substations	\$26,815,883	\$17,742,143	\$9,073,740
Transmission	\$54,669,880	\$39,134,033	\$15,535,847
Feeders			
OH	\$11,336,251	\$31,948,400	-\$20,612,149
UG	\$28,050,074	\$70,067,895	-\$42,017,821
Trenching	\$0	\$0	\$0
R/W's	\$0	\$557,700	-\$557,700
Poles	\$23,138,717		\$23,138,717
Transformers			
OH	\$5,561,388	\$5,783,100	-\$221,712
PM	\$11,082,509	\$11,560,600	-\$478,091
Low Voltage Circuits	\$17,612,278	\$14,718,700	\$2,893,578
Service Drops			
OH	\$13,194,131	\$14,554,487	-\$1,360,356
UG	\$0	\$24,181,000	-\$24,181,000
Meters	\$6,071,543	\$5,026,200	\$1,045,343
Risers, Switches, Capacitors	\$5,506,545	\$8,197,059	-\$2,690,514
Street Lights	\$0	\$1,827,518	-\$1,827,518
RCN Subtotal	\$200,926,524	\$245,298,834	-\$44,372,310
Less Depreciation	-\$98,787,794	-\$114,954,261	\$16,166,467
RCNLD 2005	\$102,138,730	\$130,344,573	-\$28,205,843
Stranded*	\$5,835,134	\$0	\$5,835,134
Total to RCNLD	\$107,973,864	\$130,344,573	-\$22,370,709
Severance	\$2,009,265	\$2,351,153	-\$341,888
Startup	\$45,241,575	\$40,049,485	
Ongoing Capital	\$5,171,374	\$2,655,168	\$2,516,206
Legal Costs	\$20,000,000	\$10,000,000	\$10,000,000
Grand Total	\$180,396,078	\$185,400,379	-\$5,004,301

* Stranded facilities are included in SMUD's RCNLD figures

See Appendix E for details on how staff calculated RCN, RCNLD, OC, and OCLD figures.
The following section provides information on the major differences between the R.W. Beck and SMUD cost estimates before deprecation has been calculated.

Substation Costs - R.W. Beck's cost estimate for substations is higher by $\$ 9$ million in the RCN value.
Reasons: R.W. Beck included costs for customer-owned substations which will not be acquired. R.W. Beck also used higher costs for substation construction than SMUD's unit cost for substation construction.

Transmission lines - R.W. Beck's cost estimate for transmission lines is higher by $\$ 15$ million in the RCN value.
Reasons: R.W. Beck included more transmission lines than what the District will need to acquire based on the SMUD Scenario.

Overhead Feeder and Pole Costs - R.W. Beck's cost estimate for overhead feeders is higher by $\$ 2.5$ million in the RCN value.
Reasons: R.W. Beck had higher unit costs for overhead feeders and poles. SMUD's comparable unit cost includes the cost of the pole and attachment in the cost of the overhead line.

Underground Feeder Costs - R.W. Beck's cost estimate for underground feeders is lower by $\$ 42$ million in the RCN value.
Reasons: R.W. Beck assumed direct burial of conduit and cable in green field areas. SMUD staff identified cable installed in trenches and some trenches would be in pavement areas resulting in higher unit costs for construction. Since the underground feeder is not visible, SMUD used more conservative numbers.

Low Voltage Circuits - R.W. Beck's cost estimate for low voltage circuits is higher by $\$ 2.9$ million in the RCN value.
Reasons: R.W. Beck had higher unit cost for installing overhead and underground low voltage secondary circuits than SMUD's unit costs.

Underground Service Drops - R.W. Beck's cost estimate for service drops is lower by $\$ 24$ million in the RCN value.
Reasons: R.W. Beck did not account for any underground service drops in its inventory or valuation. SMUD staff included 23,684 underground service drops in the cost analysis based on information provided by PG\&E.

Streetlights - R.W. Beck's cost estimate for streetlights is lower by $\$ 1.8$ million in the RCN value.
Reasons: R.W. Beck did not include the streetlight system in its inventory or valuation. PG\&E provided a cost for the streetlight system and SMUD included that value in the cost estimate.

Based on SMUD's analysis of the distribution system and R.W. Beck's valuation and facilities assessment, District staff concurs with R.W. Beck's conclusion that there are no technical barriers or obstacles to incorporating the annexation area distribution system into SMUD's distribution system.

SECTION 2
ECONOMIC EVALUATION

ECONOMIC EVALUATION

R.W. Beck's annexation economic analysis studied numerous scenarios and tested many assumptions, finding that under the vast majority of circumstances SMUD annexation would result in positive margins and savings for Yolo customers. Savings ranged from a low of -2.2% to a high of 11.25%, with a "most likely" case that resulted in an 8.5% savings. Given little useful data and cooperation from PG\&E, R.W. Beck's analysis made reasonable assumptions on key variables and addressed economic risks through sensitivities. SMUD staff has reviewed R.W. Beck's analysis and believes both the methodology and the assumptions applied were reasonable. However, SMUD staff developed it's own analysis to address alternatives on key assumptions, incorporate SMUD's expected cost of serving Yolo customers, validate important inputs, and evaluate the potential for SMUD's existing customers to benefit from annexation.

SMUD's staff analysis essentially confirms R.W. Beck's results and indicates that annexation could result in an 8% margin relative to PG\&E's forecasted average rates. In addition, the analysis also shows that depending on how these margins are divided, current SMUD customers are likely to have both tangible and intangible benefits due to annexation. Although SMUD staff believes positive margins over the entire study period are very likely, relatively high power supply, debt service, and exit fees in the short run could limit the savings prior to 2012. The following describes the key variables and assumptions addressed by the SMUD staff analysis.

Power Supply Costs

Power supply costs include energy, capacity, ancillary services, and renewable energy supplies for the annexed area.

Staff evaluated the costs of supplying energy, capacity reserves, and ancillary services, for base and intermediate load energy through ownership of a new natural gas fired generation plant. Costs for energy during peak load periods are met through long-term purchase power contracts.

The costs for both new natural gas generation and purchase power contracts are based on generation data included in CPUC Rulemaking 04-04-026 (filed April 22, 2004). Natural gas costs were the same as those used in the R.W. Beck study (see table below) and financing costs included a 30% debt service coverage.

R.W. Beck's Gas Forecast

Northern CA Natural Gas Prices				
	Constant 2004 (\$/MMBtu)5		Nominal (\$/MMBtu)	
2004	\$	6.27	\$	6.27
2005	\$	6.41	\$	6.55
2006	\$	5.97	\$	6.24
2007	\$	5.25	\$	5.61
2008	\$	4.50	\$	4.92
2009	\$	4.30	\$	4.81
2010	\$	4.27	\$	4.89
2011	\$	4.35	\$	5.10
2012	\$	4.27	\$	5.12
2013	\$	4.43	\$	5.44
2014	\$	4.45	\$	5.59
2015	\$	4.45	\$	5.71
2016	\$	4.50	\$	5.91
2017	\$	4.49	\$	6.03
2018	\$	4.55	\$	6.26
2019	\$	4.49	\$	6.32
2020	\$	4.51	\$	6.49
2021	\$	4.55	\$	6.70
2022	\$	4.61	\$	6.94
2023	\$	4.66	\$	7.18
2024	\$	4.63	\$	7.30
2025	\$	4.72	\$	7.61
2026	\$	4.64	\$	7.65

The cash flow from the debt service coverage is used to offset future investment requirements in new plant so that over time customer equity accumulates and the fixed cost component of power decreases on an energy basis. Costs also include a $\$ 5 / \mathrm{MWh}$ renewable adder for 20% of annexation area energy requirements. The resulting power supply costs are higher than those included in the R.W. Beck study, as shown in the figure below.

In addition, power supply costs for PG\&E's uncommitted energy also increased to reflect a similar energy purchasing strategy as that used to meet Yolo loads. The impact of these changes in power costs assumptions is to increase the cost of power for both Yolo and PG\&E. The increase to PG\&E is slightly less because about 30% of PG\&E's long term resource mix comes from hydroelectric or nuclear power. Overall, these assumption changes reduced the net present value of annexation savings by approximately $\$ 34$ million, or about 1.5% relative to R.W. Beck assumptions on power supply costs.

Appendix F contains two tables, SMUD's assumptions regarding power costs for PG\&E and SMUD and Assumptions for development of Yolo Power Costs.

Debt Service and Acquisition Costs

Based on SMUD's technical evaluation of the R.W. Beck study and SMUD's independent verification of the value of the Yolo electric system, initial debt issuance included the costs of system acquisition, severance costs, startup costs, litigation costs, and costs of debt issuance. Ongoing capital investments were also included in the year in which they are incurred. Initial capital investments were assumed to be financed entirely with debt issued at the beginning of the year when the assets are acquired. The debt service revenue requirement included debt service coverage, resulting in a revenue requirement of 1.3 times debt service. The additional coverage was retained as equity and used to partially finance capital investments in subsequent years. The remaining
balance of subsequent capital additions were financed with tax-exempt debt issued at the beginning of the year in which the capital assets were acquired.

Debt payments for all debt issued was based on level payment of principal and interest with a thirty-year term. An interest rate of 6.25% was used for taxable debt while taxexempt debt was issued at 5.00%. Overall debt payments based on these assumptions were slightly lower than R.W. Beck's assumed debt service payments and resulted in an increase in the net present value of savings of about $\$ 30$ million.

Appendix G contains charts showing SMUD's assumptions for debt service and acquisition costs:

Exit Fees

During the California energy crisis in 2000-2001, the California Department of Water Resources (DWR) took over purchasing energy for California's Investor Owned Utilities (IOUs). The energy purchased and the energy contracts signed by the DWR were generally more expensive than subsequent market prices. As a result, any customers no longer requiring IOU energy resources (including long term DWR contracts) were obligated to pay exit fees. The California Public Utilities Commission (CPUC) in Decision 04-12-059 allowed certain customers exemptions from a portion of the exit fees on the basis that their loads were not included in the load forecasts used by the DWR to acquire the long-term energy contracts. R.W. Beck assumed that all of the City of Davis load and 20% of all new load in the annexation territories would receive exemptions from the exit fees.

To be conservative, SMUD staff has assumed that the exit fee exemptions will only apply to 10% of Davis load and to none of the new load in the annexation territories. To the extent that new load or more than 10% of Davis load receives an exit fee exemption, savings between about 2008 and 2012 will increase by approximately $\$ 10$ million on a net present basis.

SMUD Average Rates and Rate Forecast

SMUD staff developed current and forecasted SMUD average rates for the Yolo jurisdictions to evaluate SMUD's competitiveness with PG\&E and to determine the level of surcharge required by Yolo customers.

For residential average rates, SMUD staff relied on 1997 PG\&E energy use data made available publicly by PG\&E in the late 1990s. The data consists of monthly energy use for all PG\&E residential accounts by zip code. Staff used the 1997 billing data to determine the monthly distribution of energy use in the jurisdictional populations by SMUD rate tiers, which is depicted in the table below.

Month	Residential Energy Tier Distribution by Jurisdiction								
	Davis			West Sacramento			Woodland		
	Tier 1	Tier 2	Tier 3	Tier 1	Tier 2	Tier 3	Tier 1	Tier 2	Tier 3
January	80.7\%	8.4\%	10.9\%	76.1\%	9.7\%	14.2\%	74.4\%	10.6\%	15.0\%
February	84.1\%	7.1\%	8.8\%	78.2\%	8.8\%	13.0\%	80.0\%	8.8\%	11.1\%
March	85.9\%	6.4\%	7.7\%	82.0\%	8.1\%	9.9\%	82.0\%	8.3\%	9.7\%
April	87.5\%	5.8\%	6.7\%	85.4\%	7.2\%	7.4\%	83.6\%	7.8\%	8.7\%
May	86.4\%	7.3\%	6.3\%	89.0\%	6.7\%	4.2\%	81.5\%	10.3\%	8.1\%
June	81.1\%	9.7\%	9.2\%	79.5\%	11.3\%	9.2\%	71.6\%	13.9\%	14.5\%
July	77.6\%	11.0\%	11.4\%	76.8\%	12.5\%	10.8\%	67.8\%	15.0\%	17.2\%
August	76.2\%	11.3\%	12.4\%	72.6\%	13.6\%	13.8\%	65.5\%	15.5\%	19.0%
September	83.3\%	8.8\%	7.9\%	82.1\%	10.2\%	7.7\%	76.8\%	12.4\%	10.8\%
October	85.8\%	7.4\%	6.8\%	83.0\%	9.3\%	7.7\%	81.5\%	10.3\%	8.2\%
November	86.1\%	6.2\%	7.8\%	82.9\%	7.7\%	9.4\%	79.6\%	8.9\%	11.5\%
December	83.6\%	7.5\%	8.9\%	81.8\%	8.3\%	10.0\%	79.1\%	9.3\%	11.6\%
Annual	82.8\%	8.3\%	8.9\%	80.3\%	9.7\%	10.0\%	76.0\%	11.4\%	12.6\%

These tier shares were applied to sales and multiplied by the appropriate SMUD rates to estimate total revenues. The table below illustrates the results for the City of Davis.

Estimated 2004 Davis Residential Energy and SMUD Revenue

Month	Estimated Energy Use Allocation				Estimated Revenue coldild Residential Rates				
	Ter 1 kuh	Ter 2kuh	Tier 3kuh	Todd kuh	Tier 1 \$	Ter 2\$	Ter 3\$	Cistome	Tota
tenuary	11,537,919	1,203,051	1,560,818	14,291,788	\$8200,726	\$109,991	\$233,360	\$134,736	\$1,483,812
Fetruary	10,923,222	925241	1,145,048	12,983,511	\$8871,673	\$130,737	\$175994	\$134,735	\$1,313,139
Mech	10,440,490	780.840	906,383	12,157,522	\$883, 151	\$110306	\$143,922	\$134,736	\$1,272,114
April	10,027,521	685956	769,937	11,483,323	\$ 9000,196	994,087	\$118,399	\$134,736	\$ $\$ 1,147,387$
Mey	11,118840	944,569	805,090	12,808,500	\$9362,892	\$142,630	\$135,497	\$134,735	\$1,375,753
lune	12,177,792	1,459,980	1,380,519	15,018,301	\$1,054,597	\$220,459	\$232,341	\$134,736	\$1,642, 132
duly	12,542,718	1,777 899	1,84,515	16,170, 13	\$1,086,19	\$7268,483	\$311273	\$134,736	\$1,800,67
August	12,821,494	1,905,367	2,089,196	16816,008	\$1,110,341	\$287,709	\$251,611	\$134,736	\$1,884,39
September	11,696,577	1,236,942	1,114,054	14,047,574	\$1,012,924	\$188,778	\$187,405	\$134,735	\$1,521,932
October	11,432,178	986,343	909,471	13,327,982	\$8930,027	\$143938	\$153,064	\$134,736	\$1,426,763
Novernber	10,395,536	743,195	998,342	12,065,072	\$882,768	\$105013	\$143,916	\$134,735	\$1,212,450
December	10,908,518	980,050	1,162,772	13,051,319	\$870,500	\$138,478	\$178,718	\$134,736	\$1,322,431
Totals	136,012,795	13,609,133	14,649,141	164,271,069	\$11,341,900	2,003,588	,370,532	\$1,616,820	\$17,332,930

Further adjustments to this revenue were done to reflect Yolo customer's likely participation in low-income and medical equipment programs as well as SMUD's Greenergy program. Adjusted revenues divided by sales determined SMUD's residential average rate by Yolo jurisdiction, which is summarized in the following table.

Calculation of Average Residential Rate by City			
	W Sac	Davis	Woodland
Adjusted Annual Revenue	\$9,458,100	\$16,767,763	\$13,705,828
Annual Energy Use (kWh)	92,186,964	164,271,069	130,660,087
Interim Average Price	\$0.10260	\$0.10207	\$0.10490
+ Greenergy premium	\$0.00039	\$0.00039	\$0.00039
Final Average Price	\$0.10299	\$0.10246	\$0.1052

For commercial average rates, PG\&E did not provide sufficient information to estimate SMUD average rates using Yolo commercial loads. Absent sufficient Yolo commercial usage and demand data, SMUD assumed average rates for Yolo commercial customers would be similar to current SMUD commercial customers. A comparison of PG\&E and SMUD commercial loadshapes supported this assumption, which is shown in the graphs below.

SMUD vs. PG\&E Load Shapes - Commercial Winter Weekday (January 2001)

The table below summarizes SMUD's commercial average rates. These rates combined with the residential average rates described above were weighted by customer class energy sales by city to arrive at a SMUD system average rate by Yolo jurisdiction. System average rates were forecast based on inflation, expiring long-term contracts, reduced nuclear decommissioning costs, hydro relicensing costs, open position energy costs, natural gas costs, and renewable power supply costs.

Calculation of Average Commercial Rates

Rate Category Annual Revenue

	Annual kWh	Avg Price	
Sm Com	$\$ 291,826,051$	$2,747,471,669$	$\$ 0.10622$
Med Com	$\$ 139,699,471$	$1,507,738,803$	$\$ 0.09265$
Large Com	$\$ 114,284,419$	$1,467,076,006$	$\$ 0.07790$
Ag	$\$ 5,817,794$	$60,501,432$	$\$ 0.09616$
Other	$\$ 6,344,692$	$74,431,671$	$\$ 0.08524$

PG\&E Average Rates and Rate Forecast

PG\&E's average rates are the rates Yolo customers would pay absent annexation by SMUD. Therefore, margin or savings due to annexation is determined by the difference between PG\&E's average rates and Yolo customers' costs. To understand these margins over time, a projection of PG\&E rates is necessary.

PG\&E did not provide a projection of their rates when asked in data requests. Absent a rate projection by PG\&E, SMUD staff developed a PG\&E rate forecast. The starting point for PG\&E's residential rate forecast is shown in the table below and is based on a spreadsheet provided by PG\&E.

Residential Average Rates by City

City	(kWh)	Avg. Rate
West Sacramento	$92,186,964$	$\$ 0.1254$
Davis	$164,271,069$	$\$ 0.1329$
Woodland	$130,660,087$	$\$ 0.1342$

SMUD staff validated PG\&E residential average rates using residential billing data obtained from PG\&E in 1997. The billing data included all residential customers in all three cities as of 1997. In addition, SMUD validated the limited residential load shape information provided by PG\&E. The following graphs compare PG\&E and SMUD residential load shapes.

SMUD vs. PG\&E Load Shapes - Residential Winter Weekday (January 2001)

For PG\&E's commercial average rates, PG\&E provided aggregate commercial average load shapes and commercial average rates relative to the Yolo jurisdictions.
Unfortunately, PG\&E's aggregate commercial average load shapes were inconsistent with PG\&E's commercial class average rates by Yolo jurisdiction. Therefore, SMUD staff used the commercial average rates in PG\&E's Phase II General Rate Case ("GRC") filing as the starting point for the PG\&E rate forecast. PG\&E's Phase II GRC commercial average rates are shown in the table below.

PG\&E Class Average Rates (Phase II GRC Proposal)

Customer Class	Average Rates
Agriculture	$\$ 0.1170$
Small Commercial	$\$ 0.1502$
Medium Commercial	$\$ 0.1237$
Large Commercial	$\$ 0.1119$
Industrial	$\$ 0.0970$

Upon deriving the PG\&E average residential and commercial rates the rates were weighted by sales in each city and customer class to arrive at the overall system average rate by city, as shown in the following table.

System Weighted Average PG\&E Rates

City	Average Rates
West Sacramento	$\$ 0.1187$
Davis	$\$ 0.1310$
Woodland	$\$ 0.1235$

PG\&E's system average rates were then forecast based on inflation, expiring DWR contracts, new nuclear investments, hydro relicensing costs, PG\&E's open position energy costs, QF contract expirations, renewable power supply costs, and natural gas costs. Over the long run the average rate differential between PG\&E and SMUD is between $15 \%-20 \%$.

Operations, Maintenance, and Overhead Costs

Operations, maintenance, and overhead costs are an important factor in determining potential annexation benefits derived from economies of scale, i.e. spreading costs over more usage. R.W. Beck essentially assumed that there would be few economies of scale in annexation. However, SMUD completed a detailed analysis of all Business Units (Customer, Distribution, Energy Supply, and Corporate Services) to develop an estimate of the incremental costs of serving the annexed territory that is discussed below.

Incremental Operation \& Maintenance $(O \& M)$ to Serve Proposed Annexation Area

The District tracks costs by process and cost element within each of its core business units - Energy Supply, Distribution, and Customer - and for the related service Business Units - Technology, Internal Services, and Corporate Services. The incremental cost to serve annexed customers was developed by each Business Unit by estimating the incremental work impact on each process of the additional customers and service delivery infrastructure, and estimating the resources needed to perform this additional work. Labor resources were costed using 2005 budget activity type rates, which include the cost of salaries and wages, overtime, paid leave, and employee benefits such as health insurance and retirement contributions. Non-labor resources such as contract services, materials, insurance, postage and other direct costs were costed using current purchase cost and contracting rates.

The following table summarizes the incremental O\&M costs and new positions to serve the proposed annexation:

O\&M INCREASES FROM ANNEXATION SUMMARY BY BUSINESS UNIT			
	\$ Millions		
BUSINESS UNIT	2005 BUDGET	ANNEXATION INCREASE	\%
Distribution \& Transmission	\$58.15	\$5.70	9.8\%
Customer	63.69	3.62	5.7\%
Energy Supply-System Ops \& Commodity	22.54	0.70	3.1\%
Business Services	14.19	1.01	7.1\%
Corporate Services	13.41	0.46	3.5\%
TOTAL DISTRICT	\$171.98	\$11.49	6.7\%
		ANNEXATION	
STAFFING	TOTAL	INCREASE	\%
Distribution	692	45	6.5\%
Customer	640	26	4.1\%
Energy Supply (excl prod \& decom)	148	5	3.4\%
Corporate Services	67	1	1.5\%
Technology	205	0	0.0\%
Internal Services	413	2	0.5\%
TOTAL DISTRICT	2,165	79	3.6\%

Distribution Business Unit

The Distribution Business Unit estimates ongoing costs of $\$ 5.23$ million in 2005 dollars for distribution system O\&M, and $\$ 460,000$ for transmission system O\&M. These estimates represent 9.7 percent and 10.8 percent, respectively, of the comparable 2005 budget for these costs. The Distribution estimate includes 45 new positions (6.5 percent increase) as follows:

Line Workers	20	60% O\&M/40\% Capital
Electrician/Tech	3	60% O\&M/40\% Capital
Troubleshooters	4	100% O\&M
Vegetation Planner	2	100% O\&M
Cable Locators	2	100% Capital
Designers	2	100% Capital
System Engineer	2	60% O\&M/40\% Capital
System Operator	2	60% O\&M/40\% Capital
Meter Technician	3	60% O\&M/40\% Capital
GIS Specialist	2	60% O\&M/40\% Capital
Foreman Network	1	100% O\&M
Process Supervisor	1	60% O\&M/40\% Capital
Other	1	100% O\&M
TOTAL	45	

Broken down by type of position, field employees are increasing approximately 12 percent, while support positions are increasing only 4 percent. Labor and benefit costs for these incremental position total $\$ 3.0$ million in O\&M and $\$ 1.7$ million in Capital, which is contained in Annual Capital Upgrades. Incremental costs for contract services labor is estimated at $\$ 2.31$ million, with the majority of this amount, $\$ 1.872$ million, designated for tree trimming. Tree trimming labor for the annexed area will be totally by contract, so this increase is 30 percent higher than the 2005 budget. Other direct costs, which are primarily materials, are assumed to increase 12 percent. The non-labor portion of indirect costs, which includes small tools, training, and supplies is assumed to increase $\$ 410,000$ or 9 percent, proportionate to the amount of O\&M labor growth. The budget for internal service and technology allocations is assumed to increase $\$ 310,000$ or 4.6 percent, to accommodate an increase in vehicle charges and additional personal computers.

The Distribution Business Unit has also estimated an additional \$768,000 would be required for first-year startup costs. These costs would be required for substation equipment documentation and evaluation, and for tree trimming costs to bring the annexed area up to SMUD trimming cycle standards.

Customer Business Unit

The Customer Business Unit projects incremental operating costs of $\$ 3.62$ million, which is 5.7 percent of its 2005 O\&M budget. Included in this estimate are 26 new positions (4.1 percent increase) as follows:

Meter Readers	5
Field Services	6
Remittance Processing	3
Contact Center	5
Key Account Reps	5
Residential Services	2
TOTAL	26

The increase in meter readers is only 6 percent higher than current staffing levels, in spite of a 12 percent increase in customers, because of the assumed installation of Encoder Receiver Transmitter (ERT) meters in the annexed territory as part of startup costs. No staffing increases are assumed in the Strategy and Customer Communication segments. The total labor and benefits cost of these new positions is $\$ 2.15$ million, which is 6.2 percent higher than the 2005 O\&M labor budget. This increase is higher than the staffing increase because of positions utilized in Capital and Public Goods. Other direct costs, such as contract services, postage, office supplies and advertising are assumed to increase $\$ 1.02$ million or 10 percent over the 2005 budget, slightly less than the 12 percent increase in customers. Business unit indirect costs, such as office supplies, contract services, uniforms and training, are projected to increase $\$ 70,000$ or 5 percent, which is in line with the staffing increase. Technology and internal service costs are estimated to increase $\$ 370,000$ or 3.1 percent to provide for additional vehicles, personal computers and SAP licenses.

The Customer Business Unit is also anticipating \$320,000 of first-year startup costs to provide for 4 additional contact center positions to handle additional calls following the cutover.

Energy Supply Business Unit

The only two segments of Energy Supply to be affected by annexation are System Operations and Reliability (including transmission O\&M) and Commodity Procurement and Sales. The other two segments, Energy Production and Decommissioning, will not be affected. The cost of incremental power plant staffing is included in the power supply cost estimates. In the two affected segments, annexation will generate incremental costs of $\$ 1.16$ million, which is 4.3 percent of the $2005 \mathrm{O} \& \mathrm{M}$ budget. This figure includes a $\$ 330,000$ or 15 percent increase in transmission O\&M labor, which is the equivalent of 3 positions included in the Distribution Business Unit's new positions. The only other new positions are two positions in System Operations for system protection and operations engineering. Commodity Procurement and Sales does not anticipate any incremental staffing requirements. The projected labor increase of $\$ 580,000$ from annexation is 4.2 percent of the 2005 budget. Other direct costs such as materials and contract services total $\$ 8.16$ million in SMUD's 2005 budget, and annexation will increase these costs $\$ 480,000$ or 5.9 percent. Indirect non-labor costs will increase 30,000 or 4.7 percent, and technology and internal service will increase $\$ 70,000$ or 2.9 percent. Energy Supply has not estimated any one-time startup costs in O\&M.

Corporate and Business Services

Corporate and Business Services are projecting increases of $\$ 460,000$ or 3.5 percent and $\$ 1.01$ million or 7.1 percent, respectively, from annexation. The only additional staffing requirement is one new position in Government Affairs. Business Services non-labor costs, which are mostly property and liability insurance, are projected to increase $\$ 1.01$ million or 10 percent. Corporate Services non-labor costs, such as outside legal and contract services, are projected to increase $\$ 310,000$ or 10 percent.

Technology and Internal Services

Projected increases in these Business Units is included in the increases discussed previously. The Technology Business Unit is projecting an increase of $\$ 350,000$ or 1.3% from annexation, primarily in the Customer Business Unit for non-labor costs related to SAP. No new staffing is anticipated. Internal Services is projecting an increase of $\$ 410,000$ or 1.4 percent, primarily due to additional vehicles and substation security. One new position is anticipated in Transportation and one in Asset Protection.

In summary, based on SMUD's analysis, there are significant savings due to economies of scale that should reach about $\$ 91$ million on a net present value basis relative to the costs included in the R.W. Beck study.

Overall Impact of SMUD Analysis

Based on the assumptions and analysis SMUD conducted, there are significant savings over the long run. The savings in the early years rates are modest due to exit fees, the levelized recovery of debt service costs, and relatively high power market and natural gas prices. Over the long run these costs are mitigated (mainly through increases in customer equity) resulting in a relatively larger share of savings in the latter years. Overall, SMUD expects an average of 8% savings over a 20 -year period on a net present value basis.

In addition to SMUD's base case analysis that produces an 8% savings ($\$ 180$ million NPV) over 20 years, SMUD also developed a sensitivity analysis to evaluate power supply, exit fee, and debt service options that would help mitigate annexation costs. SMUD's sensitivity analysis made the following assumptions:

- Power Supply: Rather than assuming that all Yolo energy sales come from a combination of new customer owned generation and peaking contracts, a portion of the off-peak Yolo energy sales were assumed to come from Consumnes Power Plant ("CPP") at CPP's marginal cost of energy. In the first five years of annexation (2008-2013), SMUD expects that CPP will have surplus energy to sell in the off-peak hours. Rather than selling off-peak energy at market prices and incurring CAISO fees for delivery, a portion of CPP's energy is assumed to be sold to Yolo area customers, reducing Yolo customer's cost of energy.
- Debt Service Costs: SMUD has sufficient annual cash flow to invest in the Yolo electric system to avoid financing the acquisition with taxable debt. If SMUD were to invest cash flow in the Yolo electric system, cash flow would not be available to invest in SMUD's existing capital requirements. However, new taxexempt debt could be issued to cover current capital needs. The net effect of investing existing cash flow in the Yolo electric system is to displace taxable debt with tax-exempt financing, lowering the cost of SMUD's debt service. In addition, SMUD's existing debt portfolio includes some variable rate debt at lower cost than fixed rate debt. Assuming that SMUD's new financing to cover the value of the Yolo assets will include some variable rate debt further lowers SMUD's debt service costs.
- Exit Fees: If annexation moves forward, SMUD will pursue acquiring all available exit fee exemptions for as much of Yolo customer's load as possible. Assuming more than 10% of Davis load and some new load will ultimately be exempt from a portion of the exit fees lowers the cost of serving the Yolo jurisdiction.

Given these changes, SMUD estimates that the net present value of savings over 20 years increases to about $\$ 240$ million and that PG\&E's rates will exceed SMUD's cost of serving Yolo customers by more than 3% every year.

SMUD staff calculated total annexation benefits as the difference between PG\&E rates and SMUD's cost of serving Yolo customers. PG\&E's rates are the rates Yolo customers would otherwise pay absent annexation, so any rates below PG\&E's generates benefits
for use in paying off Yolo costs or for sharing between Yolo jurisdictions, customer classes, or with SMUD's existing customer base. To the extent SMUD's Yolo cost of service is below PG\&E's rates, benefits will accrue. SMUD staff estimates the net present value of the benefits over the 20-year period of the study to be about $\$ 180$ million in the Base Case (see Appendix D), and the NPV benefits over 20 years to be about $\$ 240$ million in the Sensitivity Case (see graph below)

Benefits accrue in either case because SMUD's Yolo cost of service is below PG\&E rates over time. The primary reasons SMUD can serve Yolo County customers at a lower cost than PG\&E are:

1) There are significant economies of scale in annexing the Yolo customers. SMUD's customer base will expand by 12% while costs are estimated to expand by only 6.7%. Please see the section of this report that discusses the O\&M and A\&G cost savings for more information.
2) Municipal financing and ownership of assets, including generation, distribution and transmission facilities is cheaper in the long run because SMUD uses cash flow produced by these assets to pay off the assets rather than paying shareholders.
3) Exit fees diminish over time but PG\&E's power costs continue to increase as a result of expiring long term contracts, investments in Diablo Canyon, hydroelectric relicensing, and renewable power costs.

SMUD staff expects that over time the Yolo customer cost of service will slowly decrease until a surcharge above SMUD's existing rates would no longer be required. The size of the surcharge, how long the surcharge may be in place, and how the benefits of the Yolo annexation will be divided will be decided by the SMUD Board.

Additional Sensitivities

SMUD staff reviewed the assumptions in this study that, if changed, could significantly change the 20-year net present value and/or the rate margin in the first five years. Acquisition price, natural gas prices, exit fees and interest rates were identified. Following is a discussion of each sensitivity.

Acquisition Cost - Each $\$ 10$ million change results in a change in net present value of $.5 \%$ and a $.5 \%$ change in the rate differential during the first five years. The potential range of this input is limited by the extensive review of the electric facilities in the annexation area. In addition, study costs were compared to benchmarks such as SMUD investment per customer, PG\&E's market to book and market to book of electric utility mergers. The range of uncertainty related to acquisition price is well within the potential benefits.

Gas Price - For each increase in gas prices of $\$ 1 / \mathrm{MMBtu}$ over the entire study period, the net present value is decreased by 1.75% and the rate margin in the first five years is reduced by 2.5%. The most significant mitigation is that increases in gas prices will also increase PG\&E rates, although not at the same rate (as discussed in the power supply section). Price spikes in gas prices can be mitigated through a portfolio of gas contracts that expire at staggered dates.

Interest Rates - Although higher interest rates could increase the annual cost of annexation, a permanent rise in rates would result in increases in PG\&E's capital cost that would offset much of the increase in the short run and actually increase the margin in the long run. If the increase were transitory, the increased cost would be limited to the call period on initial bonds. The short-term spike in interest rates would have to be over 200 basis points before it would have a significant impact on short-term margins.

Existing SMUD Customer Benefits

SMUD has completed an analysis to determine the benefits to existing SMUD customers that could accrue as a result of annexation. SMUD reviewed cash contributions that are currently made by existing SMUD customers as well as cash contributions expected to be made by Yolo customers. Generally, while Yolo customers' energy is expected to cost more than current SMUD customers' energy costs (for study purposes, no allocation to Yolo customers of existing low cost hydro or other resources has been assumed), the economies of scale savings on O\&M costs more than makes up the difference. In addition, Yolo customers' total debt service costs are
expected to be lower than SMUD customers and decommissioning costs can be spread over more usage. Based on SMUD's analysis, Yolo area customers are expected to provide cash contributions in excess of existing SMUD customers throughout the study period as depicted in the table below. Yolo's annual cash contributions would equal about $\$ 20$ - $\$ 25$ million over the 20 years of the study. Expected positive cash contributions by Yolo customers beyond that of SMUD's existing customers will help compensate SMUD's existing customers for providing Yolo customers rate certainty during the first five years of annexation.

Comparison of Cash Contribution

	$2008-2012$		$2013-2017$	
$\$ / M W H$	SMUD	YOLO	SMUD	YOLO
Customer Revenue	98.72	96.35	98.72	96.35
Power Supply	44.02	54.19	50.89	61.27
O\&M + Public Good	21.66	11.81	22.4	11.93
Decomissioning	0.83	0	0.43	0
Debt Service	16.25	13.06	15.04	12.26
Cash Contribution	15.96	17.29	9.96	10.89

In addition to the cash contributions made by Yolo customers, there are additional benefits of more load over which SMUD's power portfolio can be diversified and economies of scale that should continue to accrue over time as a result of annexation.

APPENDIX A

Load Flow Tables

N-1 Outages - Thermal Loading on 2008 Base Annexation Option

				Rating		\% LOADING	
FROM kV	TO kV	CK	OUTAGED CIRCUIT	Norm	Emerg	Norm	Emerg
HURLEY S 230	HURLEY 115	1	OUT: ELVERTAS-NORTHCTY 115 kV \#1	200	200	104	104
HURLEY S 230	HURLEY 115	1	OUT: EAST CTY-HEDGE 115 kV \#1	200	200	100	100
HURLEY S 230	HURLEY 115	1	OUT: PROCTER -HEDGE 230 kV \#1	200	200	98	98
HEDGE 115	SOUTHCTY 115	2	OUT: HEDGE -SOUTHCTY 115 kV \#1	500	580	113	97
HEDGE 115	SOUTHCTY 115	1	OUT: HEDGE -SOUTHCTY 115 kV \#2	500	580	113	97
HURLEY S 230	HURLEY 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	200	200	96	96
HURLEY S 230	HURLEY 115	1	OUT: SOUTHCTY-STA. B 115 kV \#1	200	200	94	94
EAST CTY 115	HEDGE 115	1	OUT: SOUTHCTY-STA. B 115 kV \#1	760	880	107	92
HURLEY S 230	HURLEY 115	1	OUT: CARMICAL-HURLEY S 230 kV \#1	200	200	92	92
HURLEY 115	DPWT_TP2 115	1	OUT: NORTHCTY-W.SCRMNO 115 kV \#1	442	612	127	92
HURLEY S 230	HURLEY 115	1	OUT: WHITEROK-HEDGE 230 kV \#1	200	200	90	90
HEDGE 115	SOUTHCTY 115	1	OUT: EAST CTY-HEDGE 115 kV \#1	500	580	102	88
HEDGE 115	SOUTHCTY 115	2	OUT: EAST CTY-HEDGE 115 kV \#1	500	580	102	88
NORTHCTY 115	W.SCRMNO 115	1	OUT: HEDGE -BRKRJCT 115 kV \#1	442	507	99	86
WOODLD 115	ELVWODLD 115	1	OUT: ELVERTAS-MOBILCHE 115 kV \#1	628	738	101	86
SOUTHCTY 115	STA. B 115	1	OUT: EAST CTY-HEDGE 115 kV \#1	760	880	95	82
NORTHCTY 115	W.SCRMNO 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	442	507	94	82
NORTHCTY 115	W.SCRMNO 115	1	OUT: ELVERTAS-MOBILCHE 115 kV \#1	442	507	93	81
EAST CTY 115	HEDGE 115	1	OUT: ELVERTAS-NORTHCTY 115 kV \#1	760	880	93	80
ELVERTAS 115	MOBILCHE 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	628	738	94	80
EAST CTY 115	HEDGE 115	1	OUT: HEDGE -BRKRJCT 115 kV \#1	760	880	90	78
HURLEY 115	DPWT_TP2 115	1	OUT: HURLEY -NORTHCTY 115 kV \#2	442	612	97	70
HURLEY 115	DPWT_TP2 115	1	OUT: HEDGE -BRKRJCT 115 kV \#1	442	612	94	68
HURLEY 115	DPWT_TP2 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	442	612	93	67
HEDGE 115	BRKRJCT 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	447	607	91	67

N-2 Outages - Thermal Loading on 2008 Based Annexation Option

				Rating	\% LOADING		
FROM kV	TO kV	CKT	OUTAGED CIRCUITS (N-2)	Norm	Emerg	Norm	Emerg
NORTHCTY 115	W.SCRMNO 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	442	507	150	131
HURLEY 115	DPWT_TP2 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	442	612	129	93
HEDGE 115	BRKRJCT 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	447	607	147	108
HURLEY S 230	HURLEY 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	200	200	106	106
WDLND_BM 115	HUNT 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	628	738	119	101
DAVIS 115	HUNT 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	628	738	119	101
WDLND BM 115	WOODLD 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	628	738	116	99
ELVERTAS 115	NORTHCTY 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	760	880	106	92
BRKRJCT 115	DAVIS 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	633	743	102	87
DPWTR_TP 115	W.SCRMNO 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	760	880	100	86
DPWTR_TP 115	DAVIS 115	1	OUT: ELV-MOBILCHE \& ELV-WOODLD	760	880	98	85

N-1 Outages - Thermal Loading on 2013 Base Annexation Option

				Rating		\% LOADING	
FROM kV	TO kV	CK	OUTAGED CIRCUIT (N-1)	Norm	Emerg	Norm	Emerg
HURLEY 115	DPWT_TP2 115	1	OUT: NORTHCTY - W.SCRMNO 115kV \#1	442	612	140	101
NORTHCTY 115	W.SCRMNO 115	1	OUT: HEDGE -BRKRJCT 115 kV \#1	442	507	109	95
WOODLD 115	ELVWODLD 115	1	OUT: ELVERTAS-MOBILCHE 115 kV \#1	628	738	109	93
NORTHCTY 115	W.SCRMNO 115	1	OUT: ELVERTAS-MOBILCHE 115 kV \#1	442	507	103	90
NORTHCTY 115	W.SCRMNO 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	442	507	102	89
ELVERTAS 115	MOBILCHE 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	628	738	102	87
HURLEY 115	DPWT_TP2 115	1	OUT: HURLEY -NORTHCTY 115 kV \#2	442	612	106	77
HURLEY 115	DPWT_TP2 115	1	OUT: ELVWODLD-WOODLD 115 kV \#1	442	612	101	73
HEDGE 115	BRKRJCT 115	1	OUT: NORTHCTY - W.SCRMNO 115kV \#1	447	607	91	67

N-2 Outages - Thermal Loading on 2013 Base Annexation Option

				Rating	\% LOADING		
FROM kV	TO kV	CKT	OUTAGED CIRCUITS (N-2)	Norm	Emerg	Norm	Emerg
NORTHCTY 115	W.SCRMNO 115	1	ELV-MOBILCHE \& ELV-WOODLAND	442	507	167	146
HEDGE 115	BRKRJCT 115	1	ELV-MOBILCHE \& ELV-WOODLAND	447	607	163	120
HURLEY S 230	HURLEY 115	1	ELV-MOBILCHE \& ELV-WOODLAND	200	200	115	115
WDLND_BM 115	HUNT 115	1	ELV-MOBILCHE \& ELV-WOODLAND	628	738	133	113
DAVIS 115	HUNT 115	1	ELV-MOBILCHE \& ELV-WOODLAND	628	738	133	113
WDLND_BM 115	WOODLD 115	1	ELV-MOBILCHE \& ELV-WOODLAND	628	738	130	111
HURLEY 115	DPWT_TP2 115	1	ELV-MOBILCHE \& ELV-WOODLAND	442	612	143	103
ELVERTAS 115	NORTHCTY 115	1	ELV-MOBILCHE \& ELV-WOODLAND	760	880	115	99
BRKRJCT 115	DAVIS 115	1	ELV-MOBILCHE \& ELV-WOODLAND	633	743	114	97
DPWTR_TP 115	W.SCRMNO 115	1	ELV-MOBILCHE \& ELV-WOODLAND	760	880	111	96
HEDGE 230	HEDGE 115	6	ELV-MOBILCHE \& ELV-WOODLAND	200	200	95	95
DPWTR_TP 115	DAVIS 115	1	ELV-MOBILCHE \& ELV-WOODLAND	760	880	109	94
HEDGE 230	HEDGE 115	2	ELV-MOBILCHE \& ELV-WOODLAND	120	120	92	92
HEDGE 230	HEDGE 115	4	ELV-MOBILCHE \& ELV-WOODLAND	150	150	92	92

Low Voltage: N-2 Elverta - Woodland 115kV Lines on 2008 Base Annexation Option

BUS	Vdiff	Vbase	Voutage	N-2 Outage
MOBILCHE 115.0	0.0875	0.9999	0.9124	ELV-MOBILCHE \& ELV-WOODLAND
WDLND_BM 115.0	0.0838	0.9996	0.9158	ELV-MOBILCHE \& ELV-WOODLAND
WOODLD 115.0	0.0863	0.9987	0.9124	ELV-MOBILCHE \& ELV-WOODLAND
DAVIS 115.0	0.0626	1.0066	0.9439	ELV-MOBILCHE \& ELV-WOODLAND
HUNT 115.0	0.0649	1.0059	0.941	ELV-MOBILCHE \& ELV-WOODLAND
BRKR SLG 115.0	0.0549	1.0115	0.9566	ELV-MOBILCHE \& ELV-WOODLAND

APPENDIX B

Rights-of-Way Costs

Table 2. Revised Summary of Right-of-Way Costs

Line 1	From	To	Length-Miles	Structure	Miles	ROW Costs	Location	Comments
	West Sacramento	Close to Deepwater Tap	1.04	Steel Poles			Yolo County	See line 3
	Close to Deepwater Tap	Close to Brighton	12.82	Lattice			Yolo County	
					1.2	\$ 79,200.00	Yolo County	
					1.31	\$ 456,456.00	Sacramento County	
					1.96	\$ 455,840.00	Sacramento County	
					0.71	\$ -	Sacramento County	
					0.71	\$ 834,460.00	Sacramento County	
					1.18	\$ 414,546.00	Sacramento County	
	Close to Brighton	Rio Oso	29.60	Lattice	0	\$ -	no estimate	
					7.07	\$ 2,240,502.00		
Line 2	West Sacramento	Deepwater Tap2	1.04	Steel Poles			Yolo County	see line 3
	Deepwater Tap2	Brighton	12.82	Lattice			Yolo County	see line 1
Line 3	Davis	Deepwater Tap1	10.89	Wood Pole				
					1.6	\$	Yolo County	
					0.7	\$ 20,790.00	Yolo County	
					2	\$ 17,162.00	Yolo County	
					4.8	\$ 5,068.00	Yolo County	
					9.1	\$ 43,020.00		
	Deepwater Tap1	West Sacramento	1.76	Wood Pole	1	\$ 74,000.00	Yolo County	ROW shared with lines 1 and 2
						\$ 117,020.00		
Line 4a	Deepwater Tap1	PO Tap	1.37	Steel Poles			Yolo County	along public easements and railroad
	PO Tap	$\begin{gathered} \text { Deepwater (SW 315- } \\ \mathrm{NC}) \\ \hline \end{gathered}$	1.02	Steel Poles			Yolo County	along public easements
Line 4b	Deepwater Tap2	Deepwater (SW 325NC)	2.39	Steel Poles			Yolo County	along public easements and railroad
Line 5	PO Tap	Post Office	0.66	Wood Pole			Yolo County	along public easements

Line 6	Davis	Hunt Tap	1.09	Wood Pole	1.2	\$ 1,029,600.00	Yolo County	along railroad
	Hunt Tap	Woodland BioMass Tap	9.04	Wood Pole	12.4	\$ -	Yolo County	along public easement
	Woodland BioMass Tap	Woodland	1.50	Wood Pole				along public easement
Line 6a	Hunt Tap	Hunt	0.06	Wood Pole			Yolo County	along public easement
Line 6b	$\begin{gathered} \text { Woodland } \\ \text { BioMass Tap } \\ \hline \end{gathered}$	Woodland BioMass	0.84	Wood Pole			Yolo County	along railroad
Line 7a	Davis	Barker Jct	9.85	Wood Pole				
					$\begin{aligned} & 1.9 \\ & 1.9 \\ & 0.5 \\ & 1.9 \\ & 5.3 \\ & \hline \end{aligned}$	$\begin{gathered} \$- \\ \$ 303,582.00 \\ \$- \\ \$ 3,167.00 \\ \\ \hline \end{gathered}$	Yolo County Yolo County Yolo County Yolo County Yolo County	
					11.5	\$ 306,749.00		
Line 7b	Barker Jct	Brighton	18.46	Lattice				
					3.9	\$ 8,236.00	Yolo County	
					4.3	\$ 29,515.00	Yolo County	
					1.97	\$745,387.00	Sacramento County	
					0.23	\$ 316,750.00	Sacramento County	
					0.77	\$ 203,300.00	Sacramento County	
					1.84	\$ 583,800.00	Sacramento County	
					0.73	\$ 192,700.00	Sacramento County	
					1.87	\$ 297,330.00	Sacramento County	
					2.51	\$ 397,620.00	Sacramento County	
					18.12	\$ 2,774,638.00		

APPENDIX C

Substation Unit Costs

Substation Cost Estimates

In order to compare Beck's cost estimates, SMUD staff has created unit costs. These unit costs have been applied to the various substation configurations to determine the value of the existing substation and to determine the costs for new substation and substation additions.

Substation Unit Costs

Table C-1 shows the unit costs used in the estimates for verifying Beck's costs.
Each circuit breaker bay consists of a circuit breaker and isolating disconnect switches on either side of the circuit breaker. Each bay requires foundations and supporting steel structures. In radial bus and ring bus designs, one set of protective relays can be paired with each circuit breaker. The price for circuit breakers and circuit switchers is based on recent purchases and vendor information.

SMUD typically purchases $20 \mathrm{MVA}, 69 / 12 \mathrm{kV}$ transformers for its substations. Costs for these transformers have run from approximately $\$ 250,000$ to $\$ 330,000$. The most recent prices have been above $\$ 300,000$. A couple of years ago, SMUD purchased a $40 \mathrm{MVA}, 115 / 21 \mathrm{kV}$ transformer for approximately $\$ 450,000$. The cost per MVA for these transformers is between $\$ 11,000$ and $\$ 17,000$. A cost of $\$ 16,000$ was used for all distribution power transformers.

A different value is used for the cost of bulk power transformers. SMUD recently purchased a 224 MVA $230 / 69 \mathrm{kV}$ transformer for approximately $\$ 1,400,000$. The highest bid for this transformer was approximately $\$ 2,120,000$. This works out to a range of $\$ 6,250$ to $\$ 9,500$ per MVA. To account for possible bid variations and escalation costs, a cost of $\$ 8,000$ per MVA was used.

Labor Costs

Table C-2 shows the costs for substation design and construction.

Table C-1. Substation Unit Costs

Description	Number	Unit	Unit Cost	Extended Cost
$\underline{115 \mathrm{kV} \text { Circuit Breaker Bay }}$				
circuit breaker	1	each	\$ 80,000	\$ 80,000
disconnect	2	each	\$ 10,000	\$ 20,000
protective relays	1	each	\$ 50,000	\$ 50,000
structure \& foundation	1	each	\$ 40,825	\$ 40,825
Labor				\$ 105,920
total				\$ 296,745

circuit breaker	1	each	\$ 100,000	\$	100,000
disconnect	2	each	\$ 16,000		\$ 32,000
protective relays	1	each	\$ 50,000		50,000
Structure \& foundation	1	each	\$ 40,825		40,825
Labor \$ 105,920					
total \$ 328,745					
Substation Transformer, 6 MVA					
transformer	6	MVA	\$ 16,000	\$	96,000
foundation	1	each	\$ 50,000	\$	50,000
Labor				\$	43,520
total				\$	189,520
Substation Transformer, 10 MVA					
transformer	10	MVA	\$16,000	\$	160,000
foundation	1	each	\$ 62,500	\$	62,500
Labor					\$ 37,760
total					\$ 260,260

transformer	12.5	MVA	\$	16,000	\$	200,000
foundation	1	each	\$	75,000		75,000
Labor						43,520
total \$ 318,520						
Substation Transformer, 20 MVA						
transformer	20	MVA		16,000		320,000
foundation	1	each		50,000		50,000
Labor					\$	43,520
total					\$	413,520

| Substation Transformer, 30 MVA | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| transformer | 30 | MVA | $\$ 16,000$ | $\$ 480,000$ |
| foundation | 1 | each | $\$ 62,500$ | $\$ 62,500$ |
| Labor | | | | $\$ 43,520$ |
| total | | | | $\mathbf{5 8 6 , 0 2 0}$ |

| Substation Transformer, 40 MVA | | | | |
| ---: | :--- | ---: | ---: | ---: | ---: |
| transformer | 40 | MVA | $\$ 16,000$ | $\$ 640,000$ |
| foundation | 1 | each | $\$ 75,000$ | $\$ 75,000$ |
| Labor | | | | $\$ 53,760$ |
| total | | | $\$ 768,760$ | |

12 kV Outdoor Circuit breaker Position					
12 kV Breaker, protection, disconnects	1	set	$\$ 30,000$	$\$ 30,000$	
12 kV Circuit Breaker Pad and Structure	1	set	$\$ 10,000$	$\$$	10,000
labor				$\$$	10,240

Protective Relaying-one bay

	Relay Panel	1	each	$\$ 50,000$	$\$ 50,000$
	Labor			$\$ 75,520$	
total			$\mathbf{1 2 5 , 5 2 0}$		

Table C-2. Time and Labor Costs for Substation Construction

Work Activity | Number of |
| :---: |
| weeks |\quad Costs

Construction

Transmission transformer			$30,720.00$
erection	3	$\$$	$20,480.00$
Distribution transformer	2	$\$$	$10,240.00$
Circuit breaker	1	$\$$	$40,960.00$
12 kV switchgear	4	$\$$	$40,960.00$
Relay panel	4		

Engineering/Design

Transformer erection	6	$\$$	$17,280.00$
Circuit breaker	3	$\$$	$8,640.00$
12 kV switchgear	4	$\$$	$11,520.00$
Relay panel	12	$\$$	$34,560.00$
Structure \& foundation	4	$\$$	$11,520.00$

APPENDIX D

SMUD Base Case

APPENDIX E

System Valuation

SMUD Transmission \& Distribution Annexation Estimated RCNLD and OCLD Value of PG\&E Facilities
 Straight Line Depreciation

	SMUD			
Description	RCN	RCNLD	OC	OCLD
Scenario 4 - Acquire All Areas				
Transmission Plant (same as Scenario 3)	\$51,071,183	\$16,296,974	\$14,876,057	\$9,189,067
Distribution System				
West Sacramento (includes Deep Water)	\$60,403,894	\$34,708,314	\$41,720,860	\$24,312,127
Davis	\$78,256,175	\$44,480,353	\$54,660,019	\$31,502,267
Davis (1107) - Not Acquired	(2,907,272)	(1,349,162)	(1,747, 188)	$(834,576)$
Davis (Net)	\$75,348,903	\$43,131,191	\$52,912,832	\$30,667,691
Woodland	59,586,512	33,580,770	40,955,167	23,316,325
Plainfield	8,997,980	3,664,480	4,230,902	1,817,373
Streetlights	1,827,518	\$581,699	\$1,086,094	\$345,704
Total Distribution System	\$206,164,806	\$115,666,454	\$140,905,854	\$80,459,219
Total Plant Cost	\$257,235,989	\$131,963,428	\$155,781,911	\$89,648,286
SMUD Scenario				
Transmission Plant	\$39,134,033	\$14,678,119	\$7,827,106	\$3,621,071
Distribution System				
West Sacramento (includes Deep Water)	\$60,403,894	\$34,708,314	\$41,720,860	\$24,312,127
Davis	\$78,256,175	\$44,480,353	\$54,660,019	\$31,502,267
Davis (1107) - Not Acquired	(2,907,272)	$(1,349,162)$	(1,747,188)	$(834,576)$
Davis (Net)	\$75,348,903	\$43,131,191	\$52,912,832	\$30,667,691
Woodland	59,586,512	33,580,770	40,955,167	23,316,325
Plainfield	8,997,980	3,664,480	4,230,902	1,817,373
Streetlights	1,827,518	\$581,699	\$1,086,094	\$345,704
Total Distribution System	\$206,164,806	\$115,666,454	\$140,905,854	\$80,459,219
Total Plant Cost	\$245,298,839	\$130,344,573	\$148,732,960	\$84,080,290

SMUD Annexation Study Distribution System Summary Straight Line Depreciation

SMUD Annexation Study Distribution System Summary Straight Line Depreciation

Description	Unit	Quantity	$\begin{gathered} \text { SMUD } \\ \text { QUANTITY } \end{gathered}$		SMUD RCN	SMUD RCNLD		SMUD OC	SMUD OCLD			
PLAINFIELD						\$696,489	\$411,765		\$293,341			
SUBSTATIONS	MVA	12.00	12.00	\$	977,666							
FEEDERS												
12 kv Overhead feeder,	mi	67.81	67.81	\$	5,260,000	\$1,696,958		\$2,209,240	\$718,562			
12 Kv Underground feeder	mi	1.70	1.36	\$ 5,598,400		\$1,906,841		\$266,899	\$165,518			
	mi	69.51	69.17			\$2,476,139	\$884,080					
POLES	Unit	1,348		\$	-		\$0	\$0		\$0		
TRANSFORMERS												
OVERHEAD	Unit	301	466.00	\$	563,200	\$343,459		\$397,841	\$244,597			
PAD MOUNTED	Unit Unit	17	17.00	\$	51,900	\$40,675	\$31,593		\$25,431			
			483.00	\$	615,100	\$384,134	\$429,434		\$270,028			
LOW VOLTAGE CIRCUITS	mi	3.58	0.55	\$	161,500	\$84,768		\$108,297	\$60,813			
Right of Way				\$	50,900	\$50,922		\$50,922	\$50,922			
SERVICE DROPS \& METERS	Unit	42	18.09	\$	1,344,200	\$448,285		\$633,828	\$212,093			
RISERS, SWITCHES, CAPACITORS	Unit	73	53.00	\$	250,214	\$93,039		\$120,518	\$46,095			
				\$	8,997,980	\$3,664,480	\$4,230,902		\$1,817,373			
WOODLAND							\$2,464,128		\$1,859,826			
SUBSTATIONS	MVA	145.50	145.50	\$	4,465,873	\$3,369,808						
FEEDERS						$\begin{array}{r} \$ 3,655,700 \\ \$ 13,608,322 \end{array}$	\$4,709,848		\$2,092,256			
12 kv Overhead feeder,	mi	107.69	107.69	\$	8,229,300							
12 Kv Underground feeder	mi	81.30	65.04	\$	21,943,500			\$17,305,057	\$10,731,766			
	mi	188.99	172.73	\$	30,172,800	\$17,264,021	\$22,014,905		\$12,824,022			
POLES (Pole costs assumed @\$2100) TRANSFORMERS	Unit	2,580		\$	-	\$0	\$0		\$0			
OVERHEAD	Unit	$\begin{array}{r}1,145 \\ 779 \\ \hline 1,92\end{array}$	1,438.00	\$	1,977,000	\$1,294,273	\$1,607,448		\$1,052,435			
PAD MOUNTED	Unit Unit		786.00	\$	3,338,300	\$2,403,350	\$1,816,854		\$1,335,383			
		1,924	2,224.00	\$	5,315,300	\$3,697,623	\$3,424,303		\$2,387,818			
LOW VOLTAGE CIRCUITS Right of Way SERVICE DROPS \& METERS RISERS, SWITCHES, CAPACITORS	mi	51.47	51.47	\$	3,381,000.00	\$2,015,488	\$2,566,429		\$1,545,050			
				\$	156,900.00	\$156,936	\$156,936		\$156,936			
	Unit	42	1,305.76	\$	13,375,000.00	\$5,868,748	\$8,771,941		\$3,851,218			
	Unit	-	311.00	\$	2,719,639	$\begin{array}{r} \$ 1,208,145 \\ \$ 33,580,770 \end{array}$	$\begin{array}{r} \$ 1,556,523 \\ \$ 40,955,167 \end{array}$		\$691,454$\mathbf{\$ 2 3 , 3 1 6 , 3 2 5}$			
				\$	59,586,512							
Street Lights				\$	1,827,518	\$ 581,698.98	\$	1,086,093.95	345703.7035			
TOTAL DISTRIBUTION		40,893			\$206,164,806	\$115,666,454	\$140,905,854		\$80,459,219			

SMUD Annexation Study	Estimated RCNLD and OCLD Values																					SMUD																											
West Sacramento (includes Deep Water)	Straight Line Depreciation					Year	${ }^{\text {Age in }}$	\%lyr	Depr													Using Beck Methdology																											
Description	Unit	Quantity		$\begin{array}{\|c\|} \hline \text { SMUD } \\ \text { ESTIMATE } \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { smud } \end{aligned}$					\% Cond	FERC Act	SurvivorCurve	ASL	${ }_{\text {Age }}^{\text {AsL }}$ of	UnadjustedDepreciation	Net Salvage$\%$	$\begin{gathered} \text { Adjusted } \\ \text { Depreciation } \\ \hline \end{gathered}$				Factor	RCN	SMUD RCNLD S303.964	$\begin{array}{c\|} \hline \text { smud } \\ \text { oc } \\ \hline \text { s380,799 } \end{array}$	$\begin{aligned} & \text { smud } \\ & \text { ocLD } \end{aligned}$																								
			$\underset{\text { Price }}{ }$																																														
50 kVA			1.670	\$ 464,300									32					${ }^{48}$	219	267	0.8202	S464,262																											
75 kVA		51	1,763	89,900		1984	${ }^{20}$	1.5\%	30\%	70\%	368.1	R0.5	${ }^{3}$	63\%	37.53\%	\%	34.53\%	${ }^{48}$	219	267	${ }^{0.8202}$		558,883	573,767																									
100 kVA		7.00	1.856 .88	\$ 13.000		1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202		\$8,510	\$10,661	\$6,980																								
SMUUD does not instail 37.5 FVVA Ixs		921		1,14,000	1,114,000																	\$1,114,029	\$729,382	5913,754	\$598,257																								
															P-	<	-		<		-																												
OVERHEAD THREE-PHASE TRANSFORMERS																																																	
$1 \times 45 \mathrm{KVA}$	Unit	\square_{4}^{4}	1.670			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 112.5 \mathrm{kVA}$	Unit	1	${ }^{3} .360$			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	${ }^{8 \%}$	34.53\%	48	219	267	0.8202																												
$1 \times 15150 \mathrm{kVA}$	Unit	8	${ }^{3,5473}$ /			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	${ }^{63 \%}$	${ }^{37.53 \%}$	8\%	34.53\%	${ }^{48}$	219	${ }^{267}$	0.8202																												
11225 kVA	Unit	3.00	3,733			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202																												
		16																																															
smuo																																																	
$3.15 \mathrm{kV} / \mathrm{A}$		4	\$ 2.494 /	\$ 10.000		1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202	S9,976	56,532	58,183	\$5,357																								
3.50 kVA			¢ 4.069	\$ 36,600		1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	3.5.53\%	${ }^{48}$	219	267	0.8202		\$23,977	\$30,037																									
$3.75 \mathrm{~K} / \mathrm{A}$		3.00	¢ 5.117	\$ 15.400		1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202	\$15,351	\$10,051	\$12,591	58,244																								
		16		62,000	62,0																	S61,9	S40,559	\$50,811	\$33,267																								
Used costs for 3 -single phase OHH transtomer instalation.																																																	
OVERHEAD THREE-PHASE TRANSFORMERS BANKS																																																	
	Unit	9	2.466			1984	20	1.5\%	30\%	70\%	368.1	Ro. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222																												
3 3 15 KV V	Unit	17	2.497			1984	20	${ }^{1.5 \%}$	30\%	70\%	${ }^{368.1}$	${ }^{\text {R0. }} 5$	32	${ }^{63 \%}$	37.53\%	8\%/	34.53\%	48	219	${ }_{267}^{267}$	0.8302																												
$3 \mathrm{x} 25 \mathrm{KV} / \mathrm{A}$	Unit	35	${ }^{3} 184$			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	${ }^{63 \%}$	37.53\%	8\%	34.53\%	${ }_{48}^{48}$	219	${ }^{267}$	0.8202																												
$\frac{3 \times 37.5 \mathrm{kVa}}{3 \times 50 \mathrm{kVA}}$	$\stackrel{\text { Unit }}{\text { Unit }}$	${ }_{5}$	3,745 5.010			-1984	20	${ }^{1.5 \%}$	30\%	70\%	368.1 368.1	${ }_{\text {R0. }}^{\text {R0.5 }}$	${ }_{32}^{32}$	63\%	- ${ }_{\text {37.5.53\% }}$	8\%	${ }_{3}^{34.53 \%}$	48 48	219 219	$\stackrel{267}{267}$	-0.8202																												
$3 \times 75 \mathrm{kVA}$	Unit	4	5.290			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$3 \times 100 \mathrm{kVa}$	Unit		10,079			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8%	34.53\%	48	219	267	0.8202																												
$3 \times 167 \mathrm{kVA}$	Unit	1	10.640			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$3 \times 250 \mathrm{kVA}$	Unit		11,200			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$3 \times 500 \mathrm{kVA}$	Unit		11,200			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 10+1 \times 5 \mathrm{kVA}$	Unit		2.466 !			1984	20	1.5\%	30\%	70\%	368.1	Ro. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$\frac{2 \times 10+1 \times 25 \mathrm{KVA}}{2 \times 1}$	Unit	3	2,706			1984	20	${ }^{1.5 \%}$	30\%	70\%	368.1 3681	R0.5	${ }_{32} 32$	63\%	${ }^{37.53 \%}$	8\%	${ }^{34.53 \%}$	${ }_{48}^{48}$	229	${ }_{267}^{267}$	0.8822																												
$\frac{2 \times 10+1 \times 37.5 \mathrm{kVA}}{2 \times 10+1 \times 5 \mathrm{~kJ}}$	Unit	\cdots	${ }^{2.882}$ 3,			$\begin{array}{r}1984 \\ 1984 \\ \hline\end{array}$	20	$\frac{1.5 \%}{1.5 \%}$	30\%	70\%	368.1 368.1	$\stackrel{\text { R0.5 }}{\text { Ro. }}$	${ }_{32} 32$	63\%	- 3 35.5.7\%	8\%	34.53\% 42.05%	${ }_{48}^{48}$	${ }_{1}^{2198}$	${ }_{267}^{267}$	$\frac{0.8202}{0.6292}$		\cdots																										
$2 \times 10+1 \times 75 \mathrm{kVA}$	Unit	1	3.408			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 15+1 \times 25 \mathrm{kVA}$	Unit		2,726			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 15+1 \times 37.5 \mathrm{kVA}$	Unit	1	2.913			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 15+1 \times 50 \mathrm{kVa}$	Unit	1	3,335)			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 25+1 \times 15 \mathrm{kVA}$	Unit		2.955			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	${ }^{8 \%}$	34.53\%	48	219	267	0.8202		-																										
$2 \times 25+1 \times 3.5 .5 \mathrm{kVA}$	Unit		3.3711			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$\frac{2 \times 25+1 \times 50 \mathrm{kVA}}{2 \times 2}$	Unit	2	3,793			1984	20	1.5\%	30\%	70\%	368.1	R0.5	${ }^{32}$	63\%	${ }^{37.53 \%}$	8\%	${ }^{34.53 \%}$	48	219	267	${ }^{0.8202}$																												
$\frac{2 \times 255+1 \times 75 \mathrm{KVA}}{2 \times 25+1 \times 10 \mathrm{kVA}}$	Unit Unit	1	3.886			1984 1984	${ }_{20}^{20}$	1.5\%\%	30\%	70\%\%	368.1 368.1	R0.5 R 0.5	32 32	63\%	${ }^{37.53 \%}$ 37.53\%	8\%	${ }_{\text {3 }}^{34.53 \%}$	${ }_{48}^{48}$	219 219	${ }_{267}^{267}$	0.8202 0.8202																												
$2 \times 37.5+1 \times 50 \mathrm{kVA}$	Unit	1	4.166			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 50+1 \times 25 \mathrm{k} / \mathrm{A}$	Unit	1	4.401			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222		\square																										
$2 \times 50+1 \times 3 \times 7.5 \mathrm{kVA}$	Unit		4.588			1984	20	1.5\%	30\%	70\%	368.1	${ }^{\text {R0. }}$.	32	63\%	37.53\%	${ }^{8 \%}$	34.53\%	48	219	267	0.8202																												
$2 \times 60+1 \times 75$ KVA	Unit		5,103			1984	20	1.5\%	30\%	70\%	368.1	Ro. 5	32	63\%	37.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202																												
		${ }^{85}$																																															
smud																																																	
		17	\% 2.448 /	\$ 22.0001		1984		1.5\% ${ }^{1.5 \%}$	30\%	70\%	368.1 368.1	R0.5	${ }_{32}^{32}$	63\%	37.53\%	8\%	34.53\%			${ }_{267}^{267}$		S22,032																											
$\frac{3}{3-15 \mathrm{kVA}}$		17	$5^{5} 2.494$	\$ 42,400		1984	20	1.5\%	30\%	70\%	368.1	${ }^{\text {R0. } 5}$	${ }^{32}$	63\%	${ }^{37.53 \%}$	8\%	${ }^{34.53 \%}$	${ }^{48}$	219	${ }^{267}$	${ }^{0.8202}$	${ }_{5421,328}$	S27,759	534,776	${ }_{\text {S22,769 }}$																								
${ }_{3}^{3.25 \mathrm{k} / \mathrm{kA}}$		${ }_{38}^{38}$	¢ 2.927 /			1984 1984	${ }_{20}^{20}$	1.5\%\%	30\%	70\%\%	368.1 368.1	R0.5 R0.5	${ }_{32}^{32}$	63\%\%	37.5.53\%	8\%	334.53\% ${ }_{\text {3 }}$	${ }_{48}^{48}$	219 219	267 267	-0.8202	\$ $\begin{aligned} & \text { S11,226 } \\ & 552.89\end{aligned}$	${ }_{\text {S } 54,683}$	${ }_{\text {543,387 }}$																									
${ }^{3} .3 .5 \mathrm{k} \mathrm{K/} \mathrm{~A}$		13	${ }_{5,117}$	\$ 30,700		${ }_{1984}$	${ }_{20}^{20}$	1.5\%	30\%	70\%	368.1 36.1	${ }_{\text {R0. }}$	32	63\%	${ }^{37.53 \%}$	8\%	${ }_{\text {34,53\% }}^{34.5}$	${ }_{48}^{48}$	${ }_{219}^{219}$	${ }_{267}^{267}$	-.8202		S20,101	${ }_{525,183}$																									
3.100 kVA		2	5,593,	11,200		1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202	\$11,186	57,324	59,175	s6,07																								
1-750 kVA Paammount			\$ 13,054/5			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202	so																											
1.1500 kVa Padmount			\$ 23,439 ${ }^{\text {/ }}$	s		1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202	so																											
SMUO does not install 37.5 nor 167 KVAOH HWS		${ }^{85}$		27,400	270,400																	S270,441	\$177,064	\$221,822	\$145,23																								
		-		\rightarrow					-	-	<	-	-		-	-	-	-	<		-																												
OVERHEAD TWO TRANSFORMERS BANKS																																																	
$\frac{1 \times 5+1 \times 25 \mathrm{kNA}}{1 \times 5}$	$\underset{\text { Unit }}{\text { Unit }}$		${ }_{\text {1,510 }}^{1,790}$			$\stackrel{1984}{1984}$	20	${ }^{1.5 \%}$	30\%	70% 70%	${ }_{\substack{368 . \\ 368.1}}$	$\underset{\substack{\text { Ro. } \\ \text { R0.5 }}}{ }$	32 32		37.53% 37.53%	8\%	34.53\%	${ }_{48}^{48}$	219 219	${ }_{267}^{267}$	$\frac{0.8202}{0.8202}$																												
1x10 +1x/15 K/A	Unit	11	1.655			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8%	34.53\%	${ }_{48}^{48}$	219	267	0.8202																												
$1 \times 10+1 \times 25 \mathrm{kVA}$	Unit	19	1,883			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 10+1 \times 37.5 \mathrm{kVA}$	Unit	5	2,070			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 10+1 \times 50 \mathrm{kVA}$	Unit	3	2,492			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 10+1 \times 77 \mathrm{kVA}$	Unit	1	${ }^{2,586}$			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	${ }^{8 \%}$	34.53\%	48	219	267	0.8202																												
$\frac{11 \times 10+1 \times 100 \mathrm{kVA}}{1 \times 15+1 \times 2 \mathrm{~K} / \mathrm{A}}$	Unit	10	2,679 1894 1			-1984	20	$\frac{1.5 \%}{15 \%}$	30\%																																								
$\frac{1 \times 15+1 \times 25 \mathrm{KVA}}{1 \times 15+5 \times 7 \mathrm{l}}$	$\stackrel{\text { Unit }}{\text { Unit }}$	10				1984 1984	${ }_{20}^{20}$	${ }^{1.5 \%}$	30\%	70% 70%	${ }_{3}^{368.1}{ }_{36.1}$	$\stackrel{\text { R0.5 }}{\text { R0.5 }}$	${ }_{32}^{32}$	63\%	${ }^{37753 \%}$	8\%	${ }^{34.53 \%}$	${ }_{48}^{48}$	219 219	${ }_{267}^{267}$	$\frac{0.8202}{0.8202}$																												
$1 \times 15+1 \times 50 \mathrm{kVA}$	Unit	9	2.502			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 15+1 \times 75 \mathrm{kVA}$	Unit	3	2.596 \%			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	${ }^{8 \%}$	34.53\%	48	219	267	0.8202																												
$\frac{1 \times 15+1 \times 100 \mathrm{KVA}}{1 \times 25+1 \times 7.5 \mathrm{VA}}$	Unit	$\stackrel{2}{4}$	2,689 ${ }_{\text {2,399 }}$			$\begin{array}{r}1984 \\ \hline 1984 \\ \hline\end{array}$	${ }_{20}^{20}$	${ }^{1.5 \%}$	30\%	70\%	${ }_{368.1}^{368.1}$	$\underset{\mathrm{R} 0.5}{\mathrm{R}, 5}$	${ }_{32}^{32}$	$\frac{63 \%}{63 \%}$	${ }^{37.53 \%}$	8\%	${ }_{3}^{34.53 \%}$	${ }_{48}^{48}$	219 219	${ }_{267}^{267}$	${ }_{0}^{0.8202}$																												
$1 \times 25+1 \times 50 \mathrm{kVA}$	Unit	11	2,731			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$1 \times 25+1 \times 75$ KVA	Unit	2	${ }^{2.8251}$			1984	20	1.5\%	30\%	70\%	368.1	R0.5	${ }^{32}$	63\%	37.53\%	8\%	34.53\%	48	219	${ }^{267}$	0.8822																												
	Unit Unit		2,918			1984 1984	20	${ }^{1.5 \% \%}$	30\%	70\%	368.1 3681	${ }_{\text {R0.5 }}$	${ }_{32}^{32}$	${ }_{63 \%}^{63 \%}$	${ }^{37.53 \%}$	8\%	34.53\% ${ }_{\text {3 }}$	${ }_{48}^{48}$	219 219	${ }_{267}^{267}$	-0.8202																												
$1 \times 50+1 \times 7 \times 5 \mathrm{KVA}$	Unit	2	3,433			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8%	${ }_{34.55 \%}$	${ }_{48}^{48}$	219	267	0.8202																												
$1 \times 50+1 \times 100 \mathrm{kVA}$	Unit		3.527			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$2 \times 56 \mathrm{kVA}$	Unit		1.644			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202		\square																										
$2 \times 10 \mathrm{kVA}$	Unit	25	1,644			1984	20	1.5\%	30\%	70\%	368.1	${ }^{\text {R0. }}$.	32	63\%	375.53\%	8\%	34.53\%	${ }^{48}$	219	267	0.8202																												
$\frac{2 \times 15 \mathrm{KVA}}{2 \times 5 \mathrm{KVA}}$	Unit	12	${ }_{\text {l }}^{1.6651}$			1984 1984	20	${ }^{1.5 \%}$	30\%	70\%\%	368.1 368.1	R0.5 R0.5	32 32	63\% 6	37.53\%	8\%\%	${ }^{34.53 \%}{ }^{34.53 \%}$	${ }_{4}^{48}$	219 219	${ }_{267}^{267}$	0.8202 0.8202																												
$2 \times 37.5 \mathrm{kVA}$	Unit		2.496			1984	20	1.5\%	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												
$22 \times 50 \mathrm{kVA}$	Unit	3	${ }^{3,340}$			1984	20	1.5\%	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																												

SMUD Annexation Study	Estimated RCNLD and OCLD Values																						SMU		
West Sacramento (includes Doep Water)	Straight Line Depreciation				TOTAL	Year	$\begin{gathered} \text { Age in } \\ 2004 \\ \hline \end{gathered}$	dive	Depr	\% Cond	FERC Acct	Survivor Curve	AsL	$\begin{array}{\|c\|c\|} \hline \text { Age } \% \text { of } \\ \text { AsL } \end{array}$	UnadjustedDepreciation	$\begin{array}{\|c} \text { Net Salvage } \\ \% \end{array}$	$\begin{gathered} \text { Adjusted } \\ \text { Depreciation } \end{gathered}$					Using Beck Methology			
				Smud																		CN	$\begin{aligned} & \hline \text { sMuD } \\ & \text { RCNLD } \end{aligned}$	SMUD oc SMUD OCLD	
Description	Unit	Quantity	Pricef	Estimate																					
											-	-					-			\bigcirc					
	Unit	56	496			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	${ }^{45}$	${ }^{273}$	477	0.5723				
Tiree-phase Riser $12 \mathrm{KV} 3 \# 330 \mathrm{MCM} \mathrm{AL}$.	Unit		408 .			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Thre-phase Riser $12 \mathrm{KV} 3 \# 40$ AWG AL.	Unit	2	408			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Threephase Riser $12 \mathrm{LVV} 3 \pm 10 \mathrm{AWG}$ AL	Unit	154	371			1984	20	1.5\%	30\%	70\%	${ }_{365} 36$	${ }_{\text {R1 }}$	37	54\%\%	${ }^{37.30 \%}$	-49\%	55.58\%	45	273	477	0.5723				
Threephase Riser 12 kV 2 \# 10 AWG AL.	Unit	11	371			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
		223																							
smud																									
Thre-phase Riser 12 kV 3 - 1000 kcmil AL		58	\$ 937	's 54,346		1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	0.5723	S54,346	524,142	531,104	\$13,817
Threephase Riser 12 kV 3-\#2 ANG AL.		165	\$ 704	/ 116,160		1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723	\$116,160	\$51,602	\$66,482	
Assumes polie is exisining in the field.		223		Is 170,506	S 170,506																	\$170,506	\$75,744	s97,585	\$43,350
			-	\bigcirc	\bigcirc			<	-	-	-	-	-		-	-	-	-	-	-	-				
	Unit	109	${ }^{3.615}$			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	273	${ }_{477}$	0.5723				
Three single-phase Cutuous.	Set	48	${ }^{1.594}$			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	56.58\%	45	273	477	0.5723		-		
Two single.phase Cutuous	Set	48	1.063			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-99\%	55.58\%	45	273	477	0.5723				
Pad Mounted Swith PMT4	Unit	8	5.534			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	56.58\%	45	273	477	0.5723				
Pad Mounted Swith PMH 43 W	Unit	20	6.824			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723		\square		
Pad Mounted Swith PMH6	Unit	1	8.207			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37730\%	-49\%	55.58\%	45	273	477	0.5723				
Pad Mounted Swith PM M (9	Unit	18	9,969			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Subsurface 600 A 2 Ways.	Unit	13	6.824			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723				
Sussurface 600 A 3 Ways, 2 Ways swithed.	Unit	10	6.824			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	56.58\%	45	273	477	0.5723				
Subsurface 660 A 3 Ways, 3 Ways swithed.	Unit	7	6.917			1984	20	1.5\%	30\%	70\%	365	R_{1}	37	54\%	37.30\%	-99\%	55.58\%	45	273	477	0.5723				
Subsurface 200 A Fused Swith.	Unit	16	6.917			1984	20	1.5\%	30\%	70\%	365	${ }^{\mathrm{R} 1}$	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	0.5723				
Recioser	Unit	03	9,404!			1984	20	1.5\%	30\%	70\%	365	${ }^{\mathrm{R} 1}$	${ }^{37}$	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723		\square		
		303																							
smud																									
Overtead tree-phase gang operated swith		109	S 4.338	S 472,842		1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723	S472,842	S210,051	S270,620	\$120,218
Three single-phase Cutouts.	Set	48	¢ 711	s 33,773				1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.5\%\%		273	477	0.5723	533,773	\$15,003	\$19,329	
Two single-phase Cutouts	Set	48	\$ 5811	/ 27,598		1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	0.5723	\$27,598	\$12,260	\$11,795	57,017
Pad Mounted Switch PMH9		93	S 13,000	is 1,209,000		1984	${ }^{20}$	1.5\%	30\%	70\%	${ }^{365}$	${ }^{\text {R1 }}$	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	${ }^{0.5723}$	\$1,209,000	S537,074	S691,943	${ }^{5307}$, 322
Recoser		-	\$ $31.000{ }^{\text {' }}$	is 186,000		1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723		\$82,627	s106,453	547,290
		303		['s 1,929,212	\$ 1,929,212																	\$1,292,212	S857,014	\$1,104,140	\$490,492
SMUU doos not instal single-phase cutout swithes																									
SMUD does not install sub-surface switches Assumes pole is existing in the field.																									
Crpactors bank		-	<	-	-	-	\times	-	-	-	\bigcirc	-	-		-	-	-		-	-	-				
	Unit		4.458			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	${ }^{0.5723}$				
Overthead Capacaitios Bank $3 \times 200 \mathrm{kVAR}$.	Unit	5	4.458			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37730\%	-49\%	56.58\%	45	273	${ }^{477}$	0.5723				
Overhead Capactios Bank $3 \times 300 \mathrm{KVAR}$.	Unit	26	4,458			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Overhead Capacitors Bank $3 \times 30 \mathrm{kVAR}$, $3 \times 200 \mathrm{kVAR}$	Unit		8,272			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Overnead Capacitors Bank $6 \times 100 \mathrm{kVAR}$.	Unit	-	${ }^{8,272}$			1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	${ }^{0.5723}$				
Overhead Capacitors Bank $6 \times 200 \mathrm{kVAR}$.	Unit	2	8.272			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723				
Overhead Capacalors Bank $6 \times 300 \mathrm{kVAR}$.	Unit	15	${ }^{8.272}$			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723				
Overimead Capacitors Bank $3 \times 200 \mathrm{and} 3 \times 100 \mathrm{KVAR}$.	Unit		8.272			$\underline{1984}$	20	1.5\%	30\%	70\%	365	${ }^{\text {R1 }}$	37	54\%	37730\%	-49\%	55.58\%	45	273	- 477	${ }^{0.5723}$				
Pad M Ounted Capactiors Bank $3 \times 300 \mathrm{kVVR}$.	Unit		6.071			$\underline{1984}$	20	1.5\%	30\%	70\%	365	$\mathrm{R}^{\mathrm{R} 1}$	37	54\%	37730\%	-49\%	55.58\%	45	${ }^{273}$	477	${ }^{0.5723}$				
Prad Mounted Capaciors Bank $6 \times 330 \mathrm{kVAR}$.	Unit		11,174:			1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	3730\%	-49\%	55.58\%	45	273	477	${ }^{0.5723}$				
		52																							
smuo																									
Overnead Capacitior Bank $3 \times 200 \mathrm{kVAR}$.		${ }^{31}$								70\%				54\%	37.30\%	-49\%	55.58\%		273	477	0.5723	\$134,478	559,739	57,965	
Overtead Capacitios Bank $6 \times 200 \mathrm{kVAR}$.			\$ 10.600	is 222.600		1984	20	1.5\%	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	0.5723	S22,,60	599,886	\$127,400	\$56,955
		52		$i^{\text {s }}$ 357,078	/s 357,078																	5357,078	\$158,625	\$204,365	\$90,785
SMU0 dose not instal padmount capacitor banks.																									
REGULATORS																									
$\frac{4}{4 \text { Step Voltage Reguiator }}$	Unit	1	1,764!			1984	20	1.5\%	30\%	70\%	365	R 1	37	54\%	37.30\%	-49\%	55.5\%	45	${ }^{273}$	477	0.5723		- - -		
32 Step Voliage Requilar	Unit		2,137			1984	20	1.5\%	30\%	70\%	365	$\mathrm{R1}$	37	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723				
		1																							
smud																									
32 step volage regulator			S 20.0001	Is 20,000		1984	20	1.5\%	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	${ }^{273}$	477	${ }^{0.5723}$	\$20,000	${ }_{\text {s.8.885 }}$	${ }_{\text {S }} 111447$	${ }_{\text {S5,085 }} 5$
SMUD does not install 4-step regulators				${ }^{\text {s }}{ }^{20,000}$	${ }^{\text {s }}$ 20,000																	\$20,000	s8,885	\$11,447	55,085
					S60,403, 94																				

SMUD Annexation Study	Estimated RCNLD and OCLD Values					Year $\begin{aligned} & \text { Age in } \\ & 2004\end{aligned}$		Depr	\% Cond	FERC Act					$\begin{gathered} \text { Net Salvage } \\ \% \end{gathered}$	AdjustedDepreciation					RCN	SMUD																		
Plainfield	Straight Line Depreciation							Survivor Curve			ASL	$\begin{gathered} \text { Age \% of } \\ \mathrm{ASLL}^{2} \end{gathered}$	Unadjusted	Line No.			7/3104		Factor	Using Beck Methdology																				
				SMUD				Smud												Smud		Smud																		
Description	Unit	Quantity	Price	estimate	ud			RCNLD												oc		OCLD																		
		191																																						
smud																																								
10 kVA		38	822	31,200		1979											42.05\%				0.6292	\$31,240	\$18,103	\$19,657	\$11,390															
15 kVA		16	832	\$ 13,300		1979										42.05\%				0.6292	\$13,319	57,718	58.380	\$4,856																
25 kVA		62	1.061	\$ 65.800		1979										42.05\%				0.6292	\$65,801	538,130	541,403	\$23,992																
50 kVA		39	1.670	\$ 65,100		1979										42.05\%				0.6292	\$65,130	537,741	S40,981	\$23,747																
75 kVA		24	1,7,73	\$ 42,300		1979										42.05\%				0.6292	\$42,323	\$24,525	\$26,630	\$15,431																
100 kVA		12.00	1,856.88	\$ 22.300		1979										42.05\%				0.6292	\$22,283	\$12,912	\$14,020	58,124																
SMUU does not install 37.5 kVA tx's		191		240,000	240,000																\$240,095	\$139,128	\$151,071	587,541																
OVERHEAD THREE. PHASE TRANSFORMERS																																								
11×5 kVa	Unit	8	1.670			1979	25	38\%	63\%	368.1	R0. 5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$1 \times 112.5 \mathrm{kVA}$	Unit	1	3,360			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$1 \times 1150 \mathrm{kVA}$	Unit	11	3.547]			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$11 \times 225 \mathrm{kVA}$	Unit		3,733			1984	20	38\%	63\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
		20																																						
smud																																								
$3-15 \mathrm{kVA}$		8	¢ 2,494	20,000		1,979										42.05\%				0.6292	\$19,952	\$11,562	\$12,54	\$7,275																
3 3-50 kVA		12	\$ 4,069,	48,800		1.979										42.05\%				0.6292	\$48,828	\$28,294	\$30,723	\$17,803																
3.75 kVA			+ 5,117			1.979										42.05\%				0.6292	so																			
		20		68,800	68,800																\$68,780	539,856	S43,277	\$25,078																
SMUD does not install overhead 3-phase transformers. Used costs for 3 -single phase OH transformer installation																																								
OVERHEAD THREE.PHASE TRANSFORMERS BANKS																																								
$3 \times 10 \mathrm{kVA}$	Unit	12	2,466			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$3 \times 15 \mathrm{kVA}$	Unit		2.497			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$3 \times 25 \mathrm{kVA}$	Unit	12	3,184			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$3 \times 37.5 \mathrm{kVA}$	Unit	2	3,745			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$3350 \mathrm{kV} / \mathrm{A}$	Unit	4	5.010			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$3 \times 75 \mathrm{kVA}$	Unit	2	5,290			1979	25	38\%	63\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$3 \times 100 \mathrm{kVA}$	Unit		10,079			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$3 \times 167 \mathrm{kVA}$	Unit	-	10,640			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53%	48	219	267	0.8202																				
$3 \times 250 \mathrm{kVA}$	Unit	-	11,200			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222																				
$3 \times 500 \mathrm{kVA}$	Unit	-	11,200			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222																				
$2 \times 10+1 \times 5$ KVA	Unit	-	2.466			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$2 \times 10+1 \times 25 \mathrm{kVa}$	Unit	1	2.706			1979	25	38\%	63\%	368.1	R0. 5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$2 \times 10+1 \times 37.5 \mathrm{kVA}$	Unit		2.892			-1984	20	38\%	63\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	${ }^{0.8202}$																				
$\frac{2 \times 10+1 \times 50 \mathrm{kVA}}{2 \times 10}$	Unit	1	3,314			1979	25	38\%	63\%	368.1	20.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$2 \times 10+1 \times 75 \mathrm{kVA}$	Unit	-	${ }^{3,4088}$			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$2 \times 15+1 \times 25 \mathrm{kVA}$	Unit	-	${ }^{2,726}$			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$2 \times 15+1 \times 3.5 .5 \mathrm{kVA}$	Unit	-	2,913			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$2 \times 15+1 \times 50 \mathrm{kVA}$	Unit	-	${ }^{3,335}$			$\underline{1984}$	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222																				
$2 \times 25+1 \times 15 \mathrm{kVA}$	Unit	-	2.955			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.82202																				
$2 \times 25+1 \times 3.5 \mathrm{FkVA}$	Unit	-	3,371			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53%	48	219	267	0.8220																				
$2 \times 25+1 \times 50 \mathrm{kVA}$	Unit	-	3,793:			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8222																				
$2 \times 25+1 \times 75 \mathrm{kVA}$	Unit	-	3.886			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$\frac{2 \times 25+1 \times 100 \mathrm{kVA}}{2 \times 37.5+1 \times 5 \mathrm{kVA}}$	Unit	1	3.979 4166			1984	20	38\%	63\%	368.1	${ }^{\text {R0.5 }}$	32	63\%	37.53\% 45.71%	8\%	34.53\%	${ }_{48}^{48}$	${ }_{168}^{219}$	267	${ }^{0.82022}$																				
$2 \times 50+1 \times 25 \mathrm{KVA}$	Unit	1	4.101			1984	20	38\%	63\%	3688.1	${ }_{\text {R0. }}$	32	63\%	37.53\%	8\%	${ }^{42.05 \%}$	48	219	267	0.80222																				
$2 \times 500+1 \times 37.5 \mathrm{kVA}$	Unit	-	4.588			1984	20	38\%	63\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$2 \times 50+1 \times 75 \mathrm{kVA}$	Unit		5,103,			1984	20	38\%	63\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
		35																				-	\square																	
smud																																								
3-10 KVA		12	¢ 2.448	\$ 29,400		1979										34.53\%				0.8202	\$29,376	S19,233	S24,095	\$15,776																
$3-15 \mathrm{kVA}$			¢ 2494			1979										34.53\%				0.8222	so																			
3.25 kVA		13	¢ 2.927	\$ 38,100		1979										34.53\%				0.8822	\$38,051	524.913	531,210	\$20,434																
3.50 kVA		8	¢ 4,069	\$ 32,600		1979										34.53\%				0.8202	\$32,552	\$21,313	\$26,700																	
3.7 .75 kVA		2	5.117	\$ 10,200		1979										42.05\%				0.6292	\$10,234	\$5,930	56,439	\$3,731																
3.100 kVA			5.593	s		1979										34.53\%				0.8202	so.																			
${ }_{1}^{1-750 \mathrm{kVA} \text { Padmount }}$ 1-150 K P Padmunt			${ }^{\text {¢ } 13.054}$	s		1979										34.53\%				${ }^{0.8822}$	so																			
$\frac{1-1500}{}{ }^{\text {SMUVA Pdos Padmount }}$			¢ 23,439			1979										34.53\%				0.8202	so \$10,213																			
SMUD does not install 37.5 nor $167 \mathrm{KVAOH} \mathrm{H} \times$ s		35		110,300	s 110,300																	571,389	S88,445	\$57,422																
OVERHEAD TWO TRANSFORMERS BANK																																								
$1 \times 1 \times 1 \times 37.5 \mathrm{kVA}$	Unit		${ }_{1}^{1,790}$			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$1 \times 10+1 \times 15 \mathrm{kVA}$	Unit	$-$	1.655			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$1 \times 10+1 \times 25 \mathrm{kVA}$	Unit	7	${ }^{1.883}$			1979	25	30\%	70\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$1 \times 1 \times 1 \times 1 \times 37.5 \mathrm{KVA}$	Unit	3	2.070			-1979	25	30\%	70\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
1 $1 \times 10+1 \times 50 \mathrm{kVA}$	Unit	1	2.492			1979	25	30\%	70\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				
$\frac{1 \times 10+1 \times 75 \mathrm{kVA}}{1 \times 10+1 \times 100 \mathrm{KVA}}$	Unit	1	${ }^{2}, 586$				25	30\%	70\%	368.1	${ }^{\text {R0. }}$.	32	78\%\%	${ }^{45.71 \%}$	8\%	42.05\%	48	168	267	$\frac{0.6292}{08202}$																				
$\frac{1 \times 10+1 \times 100 \mathrm{kVA}}{\frac{1 \times 15+1 \times 25 \mathrm{kVA}}{}}$	Unit		$\stackrel{2,679}{1,894}$			$\begin{array}{r}1984 \\ \hline 1979\end{array}$	${ }^{20}$	30\%	70\%	${ }_{368.1}{ }^{368.1}$	R0.5 R 0.5	32 32	63\%	${ }_{45.71 \%}^{37.53 \%}$	8\%	34.53% 42.05%	48	${ }_{168} 219$	${ }_{267} 267$	${ }^{0.6292}$																				
$1 \times 15+1 \times 37.5 \mathrm{kVA}$	Unit	1	2,081			1979	${ }^{25}$	30\%	70\%	368.1	R0.5	32	78\%	45.71\%	8%	42.05\%	${ }_{48}^{48}$	168	${ }^{267}$	$\frac{0.6292}{0.6292}$																				
${ }^{1 \times 15+1 \times 50 \mathrm{oka}}$	Unit		2.502				${ }^{20}$	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
	Unit	-	2.596			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$1 \times 15+1 \times 100 \mathrm{kVa}$	Unit		2,689			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																				
$1 \times 25+1 \times 37.5 \mathrm{KVA}$	Unit	2	2,309:			1979	25	30\%	70\%	368.1	R0.5	32	78\%	45.71\%	8\%	42.05\%	48	168	267	0.6292																				

SMUD Annexation Study Woodland	Estimated RCNLD and OCLD Values					Year	$\begin{gathered} \text { Age in } \\ 2004 \end{gathered}$	Depr	\% Cond	FERC Acct	$\begin{aligned} & \text { Survivor } \\ & \text { Curve } \end{aligned}$	ASL	$\begin{aligned} & \text { Age \% of } \\ & \text { ASLL } \end{aligned}$	Unadjusted Depreciation	$\left\lvert\, \begin{gathered} \text { Net Salvage } \\ \hline \end{gathered}\right.$	AdjustedDepreciation	Line №.		7/31104	Factor	RCN	SMUD																			
	Straight Line Depreciation				$\begin{aligned} & \hline \text { Total } \\ & \text { smud } \end{aligned}$																	Using Beck Methdology																			
				SMUD																		SMUD	Smud	smud																	
Description	Unit	Quantity	Price	estimate																		RCNLD	oc	OCLD																	
		${ }^{925}$																																							
Smud																																									
10 kVA		66	822	\$ 54,300		1984										34.53\%				0.8202	\$54,259	\$33,525	\$44,504	\$29,138																	
15 kVA		56	832 /	\$ 46,600		1984										34.53\%				0.8202	\$46,616	\$30,520	\$38,235	\$25,034																	
25 kVA		311	1.061	\$ 330,100		1984										34.53\%				0.8202	5330,067	5216,103	5270,729	\$117,253																	
50 kVA		455	1.670	\$ 759,900		1984										34.53\%				0.8202	\$759,854	\$497,494	5623,251	\$408,057																	
75 kVA		20	1.763	\$ 35,300		1984										34.53\%				0.8202	\$35,269	\$23,091	528,928	\$18,940																	
100 kVA		17.00	1.856 .88	S 31,600		1984										34.53\%				0.8202	\$31,567	\$20,668	\$25,892	\$16,952																	
SMUD does not install 37.5 kVA txs		925		${ }^{\text {s }} 1,257,800$	s 1,257,800																\$1,257,631	\$823,401	\$1,031,540	\$675,374																	
OVERHEAD THREE - PHASE TRANSFORMERS																																									
$1 \times 45 \mathrm{kVa}$	Unit	3	1.670			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 112.5 \mathrm{KVA}$	Unit	12	3,360			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
11150 kVA	Unit	5	3,547			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 225 \mathrm{kVA}$	Unit	1.00	3,733			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
		21																																							
smud																																									
3.15 kVA		3	S 2,494	\$ 7,500		1,984										34.53\%				0.8202	S7,482	54,899	56,137	\$4,018																	
3.50 kVA		17	\$ 4,069	\$ 69,200		1,984										34.53\%				0.8202	\$69,173	\$45,289	\$56,737	\$37,147																	
3.75 kVA		1.00 s	S 5.117	S 5,100!		1.984										34.53\%				0.8202	S5,117	\$3,350	54,197	\$2,748																	
SMUD does not install overhead 3-phase transformers. Used costs for 3 -single phase $O H$ transformer instalation																																									
OVERHEAD THREE-PHASE TRANSFORMERS BANKS ${ }^{\text {a }}$ (
$\frac{3}{3 \times 10 \mathrm{kVA}}$	Unit	5	${ }^{2,466}$			1984	20	30\%	70\%	${ }_{368.1}^{36.1}$	${ }^{\text {R0. }}$ R 5	${ }^{32}$	${ }^{63 \%}$	37.33\%	8\%	34.53\%	${ }_{48}^{48}$	219	${ }^{267}$	${ }^{0.88202}$																					
$3 \times 15 \mathrm{kVA}$	Unit	4	2,497			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 25 \mathrm{kVA}$	Unit	15	3,184			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 3 \times 7.5 \mathrm{kVA}$	Unit	3	3.745			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 50 \mathrm{kVA}$	Unit	9	5.010			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 75 \mathrm{kVA}$	Unit		5,290			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 100 \mathrm{kVA}$	Unit	3	10,079			$\underline{1984}$	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 167 \mathrm{kVA}$	Unit		10,640			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 250 \mathrm{kVA}$	Unit	1	11,200			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$3 \times 500 \mathrm{kVA}$	Unit	1	11,200			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$\frac{2 \times 10+1 \times 5 \mathrm{KVA}}{2 \times 10+1 \times 25 \mathrm{KVA}}$	Unit		2.466			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$\frac{2 \times 10+1 \times 25 \mathrm{KVA}}{2 \times 10+1 \times 7.5 \mathrm{kVA}}$	Unit		${ }^{2} 2.706$			$\frac{1984}{1984}$	20	30\%	70\%	368.1 368.1	${ }_{\text {R0.5 }}$	32	63\%	${ }^{37.53 \%}$	8\%	34.53\% ${ }^{3458 \%}$	48	$\stackrel{219}{219}$	${ }^{267}$	0.8202																					
$\frac{2 \times 10+1 \times 37.5 \mathrm{kVA}}{2 \times 10+1 \times 5 \mathrm{kVA}}$	Unit		${ }_{3,3,89}$			$\stackrel{1984}{1979}$	${ }_{20}^{20}$	30\%	70\%	${ }^{368.1}$	${ }^{\mathrm{R} 0.5}$	${ }^{32} \quad 32$	63\%	- ${ }^{37.53 \%}$	${ }_{8 \%}^{8 \%}$	${ }^{34.53 \%}$	${ }_{48}{ }^{48}$	${ }_{168}^{219}$	${ }_{267}^{267}$	0.8202																					
$2 \times 10+1 \times 5 \mathrm{kVA}$	Unit	-	3,408			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 15+1 \times 25 \mathrm{kVA}$	Unit	2	2.726			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 15+1 \times 3.5 \mathrm{FkV}$	Unit	-	2,913			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 15+1 \times 50 \mathrm{kVA}$	Unit	1	3,335			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 25+1 \times 15 \mathrm{kVA}$	Unit	1	${ }^{2,955}$			-1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 25+1 \times 3.5 .5 \mathrm{kVA}$	Unit	3	3,371			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 25+1 \times 50 \mathrm{kVA}$	Unit	1	3,793			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$2 \times 25+1 \times 77 \mathrm{kVA}$	Unit	-	${ }^{3,886}$			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$\frac{2 \times 25+1 \times 100 \mathrm{kVA}}{2 \times 3.5+1 \times 5 \mathrm{kVA}}$	Unit	\square	3,979 4.166			$\begin{array}{r}1984 \\ \hline 1984 \\ \hline\end{array}$	20	30\%	70\%	368.1 368.1	R0.5	32	${ }^{63 \%}$	37.53% 37.53%	8\%	34.53\%	$\stackrel{48}{48}$	${ }_{219}^{219}$	${ }_{267}^{267}$	-0.8202																					
$2 \times 50+1 \times 25 \mathrm{kVA}$	Unit	.	4,401			1984	20	30\%	70\%	368.1	${ }^{\mathrm{R} 0.5}$	32	63\%	37.53\%	8\%	${ }_{3} 34.53 \% \%$	48	219	267	0.88202																					
$2 \times 50+1 \times 37.5 \mathrm{kVA}$	Unit	-	4,588,			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	${ }_{0}^{0.8202}$																					
$2 \times 50+1 \times 5 \mathrm{kVA}$	Unit	2.00	5,103,			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
		52																				-																			
SMud																																									
3-10 KVA		5	¢ 2.448]	\$ 12,200		1984										34.53\%				0.8202	\$12,240	S8,014	S10,040	\$6,573																	
3.15 kVa		4	¢ 2.494	\$ 10,000		1984										34.53\%				0.8202	59,976	56,532	58,183																		
3.25 kVa		18	¢ 2.927	\$ 52,700		1984										34.53\%				0.8202	\$52,686	\$34,495	\$43,214	\$28,293																	
3.50 kVA		18	s 4,069	\$ 73,200		1984										34.53\%				0.6292	\$73,242	\$47,953	\$46,085																		
${ }^{3.75 \mathrm{FVA}}$		2	5.117	\$ 10,200		1984										34.53\%				0.8202	\$10,234	56,700	58,394	55,496																	
3.300 kVA		3	5.593	\$ 16,800		1984										34.53\%				0.8202	\$16,779.	\$10,986	\$13,763	s9,011																	
${ }^{1-7.500 ~ \mathrm{kA} \mathrm{Padmount}}$			¢ ${ }_{\text {S } 13,054}$	$\begin{array}{ll}\text { s } & 13,100 \\ \text { S } \\ 23.400\end{array}$		$\underset{1984}{1984}$										34.53% 34.53%				0.8202		\$88,547																			
$\frac{1.1500 \text { kVA Padmount }}{\text { Smud does not insall } 37.5 \text { nor } 167}$		$\frac{1.00}{52}$	S 23,439	S 23.400 !		1984										34.53\%				0.8202	\$23,439 $\$ 211,650$	\$15,346 S138,572	\$19,225	\$12,587 \$104,																	
SMUD does not install 37.5 nor 167 KVAOHH X's		52		211,600	S 211,600																	\$138,572	\$159,611	\$104,501																	
OVERHEAD TWO TRANSFORMERS BANKS																																									
$1 \times 5+1 \times 37.5 \mathrm{kVA}$	Unit		1,790			1984	20	30\%	70\%	368.1	R0.5	32	63\%	377.53\%	8\%	34.53\%	48	219	267	0.8202																					
$11 \times 10+1 \times 15 \mathrm{kVA}$	Unit	7	1.655			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 10+1 \times 25 \mathrm{kVA}$	Unit	18	1.883			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202		-																			
$\frac{11810+1 \times 37.5 \mathrm{kVA}}{}$	Unit	16	2.070			1984	20	30\%	70\%	368.1	${ }^{\text {R0. }} 5$	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
	Unit	16	2,492			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$\frac{1 \times 10+1 \times 75 \mathrm{kVA}}{1 \times 10+1 \times 100 \mathrm{kVA}}$	Unit		${ }^{2,566}$			1979	${ }^{25}$	30\%	70\%	368.1	${ }^{\text {R0. } 5}$	32	78\%	${ }^{45.71 \%}$		42.05\%		168	${ }^{267}$																						
$\frac{1 \times 10+1 \times 100 \mathrm{kVA}}{1 \times 15+1 \times 25 \mathrm{kA}}$	Unit		${ }^{2}$,			$\stackrel{1984}{1984}$	20	30\%	70\%	${ }_{368.1}$	R0.5	32 32	63\%	${ }^{37.53 \%} 3$ /53\%	8\%	34.53\%	48	219	${ }_{267}^{267}$	${ }_{0}^{0.82202}$																					
$1 \times 15+1 \times 37.5 \mathrm{kVA}$	Unit	2	2.081			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	$\frac{0.82022}{0.8222}$																					
$1 \times 15+1 \times 50 \mathrm{kVA}$	Unit	2	2.502			1984	20	30\%	70\%	368.1	Ro. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 15+1 \times 75 \mathrm{kVA}$	Unit		2.596			1984	20	30\%	70\%	368.1	Ro. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 15+1 \times 100 \mathrm{kVA}$	Unit		2,689			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					
$1 \times 25+1 \times 37.5 \mathrm{kVA}$	Unit	11	2,309			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202																					

SMUD Annexation Study Woodland		Estimated RCNLD and OCLD Values					Year	$\left.\begin{array}{\|c\|c\|} \text { Age in } \\ 2004 \end{array} \right\rvert\,$	Depr	\% Cond	Ferc Acct	Survivor	ASL	$\begin{gathered} \text { Age \% of } \\ \text { ASL } \end{gathered}$	Unadjusted	Net Salvage$\%$	AdjustedDepreciation	Line No.		7/31104	Factor	SMUD																				
		Straight Line Depreciation																				Using Beck Methdology																				
					SMUD																		SMUD	SMUD	Smud																	
Description		Unit	Quantity	Price	estimate																	RCN	RCNLD	oc	ocLD																	
All OH Commercial Serices	13			\$ 800	\$ 6,600		1.984										66.76\%				0.7927	S6,556	\$2,179	55,97	\$1,727																	
Ali UG Commerial Serices	240		151	\$ 750	\$ 113,500!		1.984										66.76\%				0.7927	\$113,461	\$37,717	589,943																		
Assumes pole is exisitig in the field.	253		159		120,100	120,100																\$120,016	\$39,896	\$95,140	\$31,626																	
Underground Sevice Drop																																										
All UG senvice drops	11,662	Unit	7,225	1,021			1984	20	30\%	70\%	370	R2	32	63\%	50.80\%	0\%	50.80\%	52	213	324	0.6574																					
	11,462		7,225																																							
smud																																										
	11,462		7,225		s $7.376,700$	7,376,700																\$7,376,652	${ }_{\text {S }}^{5,629,313}$	\$4, ${ }^{\text {4, 4,9,466 }}$	\$2,38,937																	
METERS																																										
Residential	23.616	Unit	20,349	131			1984	20	30\%	70\%	370	R2	32	63\%	50.80\%	0\%	50.80\%	52	213	324	0.6574																					
$\begin{aligned} & \hline \text { Commercial } \\ & \hline \text { Industrial } \\ & \hline \end{aligned}$	1,243	Unit	1,071	290			1984	20	30\%	70\%	370	R2	32	63\%	50.80\%	\%	50.80\%	52	213	324	0.6574																					
		Unit		538			1984	20	30\%	70\%	370	R2	32	63\%	50.80\%	0\%	50.80\%	52	213	324	0.6574																					
	11,616		10,009																																							
smud																																										
Residential	23.616		20.349	68	\$ 1,383,700		1.984										50.80\%				0.6574	\$1,383,730	5680,995	5909,675	\$447,560																	
${ }^{\text {Commercial }}$	1,243		1,071	¢ 144	\$ 154,200,		1,984										50.80\%				0.6574	\$154,230	\$75,881	\$101,392	\$49,885																	
			1	245	\$ 200 ,		1.984										50.80\%				0.6574	\$245	\$121	\$161	\$79																	
	Used Above estimate																																									
RISERS																																										
Three-phase Riser 12 kV / 310000 MCMAL		Unit	34	496			1984	20	30\%	70\%	365	R1	${ }^{37}$	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
		Unit	4	408			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
Three-phase Riser 12 KV 3440 AWG AL .		Unit		408			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
Three-phase Riser 12 kV 3 \# $1 / 0 \mathrm{AWG} \mathrm{AL}$. Three-phase Riser 12 kV 2 \# $1 / 0 \mathrm{AWG}$ AL		Unit	121	371			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
		Unit	67	371			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	49\%	55.58\%	45	273	477	0.5723																					
			226																																							
smud																																										
Three-phase Riser 12 kV 3 - 1000 kcmil AL			38	¢ 937	\$ 35,606		1984										55.58\%				0.5723	\$35.606	\$15.817	\$20,378	59,053																	
			188	S 704	\$ 132,352]		1984										55.58\%				0.5723	\$132,352	\$58,795	\$75,749	\$33,650																	
Assumes pole is exisiting in the field.			226		${ }^{\text {s }} 167,958$	167,958																\$167,958	\$77,612	596,127	\$42,702																	
SWITCHES																																										
SWITCHES ${ }^{\text {Overead three-phase Se Switch }}$		Unit	129	3,615			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
OVerhead three-phase Switch		Set	59	1.594			1984	20	30\%	70\%	365	R_{1}	37	54\%	3730\%	-49\%	55.58\%	45	273	477	0.5723		-																			
Two single-phase Cutuous		Set	34	1.063			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
Pad Mounted Switch PMH4		Unit	7	5,534.			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
Prad Mounted S Witch PMH 43W		Unit	9	${ }^{6,824} 8$			1984	20	30\%	70\%	365	$\mathrm{R}^{\mathrm{R} 1}$	37	54\%\%	${ }^{37.30 \%}$	-9\%\%	55.58\%	45	273	477	0.5723																					
		Unit	3	${ }^{8.2077}$			1984	20	30\%	70\%	365 365	R1	${ }^{37}$	54\%\%	37.30% 37.30%	-49\%	55.58\%\%	45	$\stackrel{273}{273}$	477	0.5723																					
Subsurface 600 A 2 Ways.		Unit	11	${ }_{6.824}$			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%\%	45	273	477	0.5723																					
Subsurface 600 A 3 Ways, 2 Ways swithed.		Unit	.	6.824			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
		Unit	4	6,917			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
		Unit	34	6,917			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273		0.5723																					
$\frac{\text { Suburface } 200 \text { A Fused Swith. }}{\text { Recloser }}$		Unit	${ }^{15}$	9,404			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
			309																																							
SMUD																																										
Overnead tree-phase gang operated swith			129	¢ 4.338	\$ 559,602,		1984										55.58\%				0.5723	\$559,602	\$248,592	\$320,275	\$142,276																	
Three single-phase Cututs.		Set	59	S 711	\$ 41,949		1984										55.58\%				0.5723	\$41,949	\$18,635	\$24,009	\$10,665																	
		Set	34	s 581/	\$ 19,754		1984										55.58\%				0.5723	\$19,754	\$8,775	\$11,306	\$5,022																	
Pad Mounted Switch PMH9			72	S 13.000 /	\$ 936,000		1984										55.58\%				0.5723	\$936,000	\$415,799	\$535,698	\$237,973																	
Recloser			15	\$ 31,000	\$ 465.0001		1984										55.58\%				0.5723	\$465.000	\$200,567 S888, 39	${ }_{\text {sper }}^{\text {sp6,132 }}$	\$118,224																	
SMUD does not install single-phase cutuut swithes			309		\$ 2,022,305	\$ 2,022,305																	\$898,369	\$1,157,420	\$514,161																	
SMUUD does not install sub-surface swithes																																										
Assumes pole is exisiting in the field.																																										
										-	-	-	-		-	-	-	-	-	-	-																					
CAPACITORS BANKS ${ }^{\text {Overtead Capacitors Bank } 3 \times 100 \mathrm{kVAR} \text {. }}$																																										
Overtead Capacitors Bank $3 \times 200 \mathrm{kVAR}$.		Unit	${ }_{33}^{4}$	${ }_{4}^{4,4588}$			1984	20	30\%	70\%	${ }_{365}^{365}$	$\stackrel{\mathrm{R} 1}{\mathrm{R} 1}$	${ }_{37}{ }^{37}$	54\%	$3{ }^{37.300 \%}$	-49\%	55.5.58\%	45	${ }_{273}^{273}$	477	-0.5723		\square																			
Ovemead Capaatiors Bank $3 \times 300 \mathrm{kVAR}$.		Unit	1	4,458			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723		-																			
Overread Capacitors Bank $3 \times 300 \mathrm{kVAR}, 3 \times 200 \mathrm{kVA}$		Unit		8,272			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
OVertead Capacaitors Bank $6 \times 100 \mathrm{KVAR}$.		Unit	15	8.272			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
OVermad Capacitors Bank $6 \times 200 \mathrm{kVaR}$.		${ }_{\text {Unit }}$	$\frac{13}{4}$	$\frac{8.272}{8.272}$			1984 1984	20	30\%	70% 70%	365 365	$\frac{\mathrm{R} 1}{\mathrm{R} 1}$	37	54\%\%	37.30\%	-49\%	-55.58\%	45	273	477	0.5723																					
		Unit	4	$\frac{8.272}{8,272}$			$\underline{1984}$	20	30\%	70\%	${ }_{365}^{365}$	$\frac{\mathrm{R} 1}{\mathrm{R} 1}$	${ }_{37}^{37}$	54\%	$\frac{37.30 \%}{37.30 \%}$	-49\%	55.58\%	45	${ }^{273} 273$	${ }_{477}^{477}$	$\frac{0.5723}{0.5723}$																					
Pad Mounted Capacitors Bank 3×300 kVAR Pad Mounted Capacitors Bank 6×300 kVAR.		Unit		6.071			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
		Unit		11,174			1984	20	30\%	70\%	365	R1	37	54\%	37.30\%	-49\%	55.58\%	45	273	477	0.5723																					
			75																																							
SMUD																																										
Ovemead Capacitors Bank $3 \times 200 \mathrm{kVAR}$.			52	4.338	\$ 225,576		1984										55.58\%				0.5723	S225,576	\$100,208	\$129,103	557,352																	
Oventead Capacitiors Bank $6 \times 200 \mathrm{kVAR}$.			23	\$ 10,600	S 243.8001		1984										55.58\%				0.5723	\$243,800	\$108,303	\$139,533	s61,985																	
			75		' 469,376	S 469,376																\$469,376	\$208,511	\$268,637	\$119,336																	
SMUD does not instal padmount capacitor banks.																																										
										-	-	\bigcirc	-		-	-	-	-	-	\bigcirc	\bigcirc																					
REGULATORS																																										

SMUD Annexation Study	Estimated RCNLD and OCLD Values				$\begin{aligned} & \hline \text { Total } \\ & \text { smud } \end{aligned}$	Year	$\begin{gathered} \text { Age in } \\ 2004 \end{gathered}$	Depr		FERC Acct	Survivor Curve		$\begin{gathered} \text { Age \% of of } \\ \text { ASL } \end{gathered}$				HANDV-WHITMAN				SMUD			
Davis (1107)	Straight Line Depreciation			$\begin{gathered} \text { SMUD } \\ \text { ESTIMATE } \end{gathered}$					\% Cond			ASL		Unadjusted Depreciation	$\begin{gathered} \text { Net Salvage } \\ \% \end{gathered}$	$\begin{gathered} \text { Adjusted } \\ \text { Depreciation } \end{gathered}$					Using Beck Methdology			
			Per Unit																			Smud	Smud	Smud
Descripition	Unit	Quantity	Pricef														Line No.	$\underset{\text { Installed }}{\substack{\text { Year }}}$	7/3104	Factor	RCN	RCNLD	oc	OCLD
		54																						

SMUD Annexation Study	Estimated RCNLD and OCLD Values				$\square-{ }^{-}$																SMUD				
Davis (1107)	Straight Line Depreciation																				Using Beck Methdology				
Description	Unit	Quantity	Per UnitPriceEstumate		$\begin{aligned} & \hline \text { TOTAL } \\ & \text { smud } \end{aligned}$	Year	$\begin{gathered} \text { Age in } \\ 2004 \end{gathered}$	Depr	\% Cond	FERC Acct	Survivor Curve	ASL	$\begin{gathered} \text { Age \% of } \\ \text { ASL } \end{gathered}$	Unadjusted Depreciation	$\underset{\%}{\text { Net Salvage }}$	AdjustedDepreciation	Line No.	HANOY-W	Hitman		RCN	$\begin{aligned} & \text { SMUD } \\ & \text { RCNLD } \end{aligned}$	$\begin{aligned} & \text { SMUD } \\ & \text { oc } \end{aligned}$	$\begin{aligned} & \text { SMUD } \\ & \text { ocLD } \end{aligned}$	
					(istarled													7/3104	Factor						
$1 \times 50+1 \times 75 \mathrm{kVA}$	Unit		3,433				1984		30\%	70\%	368.1		32					48	219	267	0.8202				
$1 \times 50+1 \times 100 \mathrm{kVA}$	Unit	-	3,527			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 5 \mathrm{kVA}$	Unit	1	1,644			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202		,			
$2 \times 10 \mathrm{kVA}$	Unit	7	1,644			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 15 \mathrm{kVA}$	Unit	2	1.665			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 25 \mathrm{kVA}$	Unit	5	${ }^{2,123}$			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202		-			
$2 \times 37.5 \mathrm{kVA}$	Unit		2.496			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 50 \mathrm{kVA}$	Unit	.	3,340			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 75 \mathrm{kVA}$	Unit	-	3,527			1984	20	30\%	70\%	368.1	R0. 5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
$2 \times 100 \mathrm{kVA}$	Unit	-	3,714			1984	20	30\%	70\%	368.1	R0.5	32	63\%	37.53\%	8\%	34.53\%	48	219	267	0.8202					
		18																							
SMUD																									
$2 \times 10 \mathrm{kVA}$		8 \$	\$ 2.032 /	\$ 16,300		1,984										34.53\%				82.02\%	\$16,256	\$10,643	\$13,334	58,730	
$2 \times 15 \mathrm{kVA}$		2 s	\$ 2.017	\$ 4,000		1,984										34.53\%				82.02\%	S4,034	\$2,641	\$3,309	\$2,166	
$2 \times 25 \mathrm{kVA}$			¢ 2,306	\$ 16,100		1,984										34.53\%				82.02\%	\$16,142	\$10,569	\$13,240	58,669	
$2 \times 50 \mathrm{kVA}$		1 s	¢ 3.422	\$ 3,400		1.984										34.53\%				82.02\%	53.422	\$2,240	\$2,807	\$1,838	
$2 \times 75 \mathrm{kVA}$			${ }^{5} 3.884$ [s		1.984										34.53\%				82.02\%	so				
$2 \times 100 \mathrm{kVA}$			${ }^{5} 4.262$ [s	s		1,984										34.53\%				8202\%	so				
SMUD does not instal 37.5 nor 167 KVAOH H ¢		18		S 39,800	39,800																\$3, 854	\$26,093	\$32,689	\$21,402	
												-		\rightarrow	<	-		+	<	<					
Pad Mounted Single-Phase Transformers																									
$1 \times 15 \mathrm{kVA}$	Unit	-	1,432			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674		\cdots			
$11 \times 5 \mathrm{kVA}$	Unit		1,432			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 37.5 \mathrm{kVA}$	Unit	-	1.850 \|			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 50 \mathrm{kVA}$	Unit	-	${ }^{1.850]}$			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674		\cdots			
$1 \times 75 \mathrm{kVA}$	Unit	-	2,454			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 100 \mathrm{kVA}$	Unit	-	2.870			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 167 \mathrm{kVA}$	Unit	-	2,964			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4664		-			
		.																							
smud																									
1.50 kVA		0 s	${ }^{5}$ 2, 1831	s		1984										34.53\%				46.74\%	so				
1.75 kVA		0 s	${ }^{5}$ 2,603	s		1984										34.53\%				46.74\%	so				
1-100 KVA		05	S 2,892	s		1984										34.53\%				46.74\%	so				
		0		s	s																so	so	so	so	
PAD MOUNTED THREEPPASE TRANSFORN																									
$11 \times 5 \mathrm{kV} / \mathrm{A}$	Unit	-	2.124			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4667					
1667.5 kVA	Unit	-	3.780			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674		\square			
$1 \times 75 \mathrm{kVA}$	Unit	-	3,780			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674		\square			
$1 \times 112.5 \mathrm{kVA}$	Unit		4.309			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 150 \mathrm{kVA}$	Unit	2	7,186			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 225 \mathrm{kVA}$	Unit	-	8,058			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 300 \mathrm{kVA}$	Unit		8.9301			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
11500 kVA	Unit	-	10,844			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 750 \mathrm{kVA}$	Unit	-	15,126			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 1000 \mathrm{kVA}$	Unit	-	16,294			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 1500 \mathrm{kVA}$	Unit	-	24.818			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674		-			
$1 \times 2000 \mathrm{kVA}$	Unit		30,039			1984	20	30\%	70\%	368.2	R0.5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 2500 \mathrm{kVA}$	Unit	-	30.039			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 3000 \mathrm{kVA}$	Unit	-	30,039			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
$1 \times 5000 \mathrm{kVA}$	Unit		30,039,			1984	20	30\%	70\%	368.2	R0. 5	32	63\%	37.53\%	8\%	34.53\%	49	215	460	0.4674					
		2																							
smud																									
1.75 kVA			5 5.855is			1984										34.53\%				46.74\%	so				
1-150 KVA		2 s	s 6.870	\$ 13,700		1984										34.53\%				46.74\%	\$13,740	\$8,96	\$6,422	54,205	
1.300 kVA		s	¢ 8.481	s		1984										34.53\%				46.74\%	so				
1-500 KVA		s	${ }^{5}$ - 11,157 ${ }^{\text {s }}$	s		1984										34.53\%				46.74\%	so				
$1-750 \mathrm{kVA}$		- ${ }^{\text {s }}$	¢ 13,054	s		1984										34.53\%				46.74\%	so				
1-1000 kVA		- ${ }^{\text {s }}$	${ }^{5}$ 17,451	s		1984										34.53\%				46.74\%	so				
$\frac{11-1500 \text { kVA }}{\text { SMUO doos }}$		s	S 23,439,	s		1984										34.53\%				46.74\%	s0				
																					\$13,740	s8,996	S6,422	\$4,205	
		\bigcirc										-		\bigcirc	$\bigcirc \times$				-	\bigcirc					
Subsurface Single-Phase Transtormers																									
$\frac{1 \times 50 \mathrm{kVA}}{1 \times 5 \mathrm{kVA}}$	Unit		${ }^{2,124} \mathbf{2 , 5 1 1}$			1994	10	10\%	90\%	${ }_{368.2}^{368.2}$	${ }_{\text {R0.5 }}^{\text {Ro. }}$	32	31\%	$\begin{array}{r}18.88 \% \\ \hline 8.88 \%\end{array}$	8\%	17.37\%	49	308308	${ }_{460}^{460}$	${ }^{0.6696}$					
$1 \times 100 \mathrm{kVA}$	Unit	-	2,957			1994	10	10\%	90\%	368.2	R0. 5	32	31\%	18.88\%	8\%	17.37\%	49	308	460	0.6696					
smud																									
1.50 kVA		0 S	5 2,183	s		1994										17.37\%				66.96\%	so				
11.75 kVA			${ }^{5}$ 2,603	s		1994										1737\%				66.96\%	so				
1-100 KVA		- ${ }^{\text {s }}$	S 2,892	s		1994										17.37\%				66.96\%	so				
Cost herei is for padmount transformers 8 looded labor to install.																					so	so	so	so	
Subsurface Three.Phase Transtormers																									
$1 \times 112.5 \mathrm{kVA}$	Unit	-	4,303			1994	10	10\%	90\%	368.2	R0. 5	32	31\%	18.88\%	8\%	17.37\%	49	308	460	0.6696					
$1 \times 150 \mathrm{kVA}$	Unit	-	7,290			1994	10	10\%	90\%	368.2	R0.5	32	31\%	18.88\%	8\%	1737\%	49	308	460	0.6696		\cdots			
$\frac{112225 \mathrm{kV}}{1}$	Unit	-	8,162			1994	10	10\%	90\%	368.2	R0. 5	32	31\%	18.88\%	8\%	17.37\%	49	308	460	0.6696					
$1 \times 300 \mathrm{kVA}$	Unit	-	9,034			1994		10\%	90\%	368.2	R0.5	32	31\%	18.88\%	8\%	17.37\%	49	308	460	0.6696					

SMUD						
$2 \times 10 \mathrm{kVA}$	48	2,032	s	97,500		
$2 \times 15 \mathrm{kVA}$	53	2,017	s	106,900		
$2 \times 25 \mathrm{kVA}$	146	2,306	\$	336,700		
$2 \times 50 \mathrm{kVA}$	150	3,422	\$	513,400		
$2 \times 75 \mathrm{kVA}$	17	3,884	\$	66,100		
$2 \times 100 \mathrm{kVA}$	6	4,262	\$	25,500		
SMUD does not install 37.5 nor $167 \mathrm{kVA} \mathrm{OH} \mathrm{tx's}$	420		s	1,146,100		1,146,100

Subsurface 200 A Fused Switch.	Unit	54	6,917				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Recloser	Unit	29	9,404				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
		1,002																			
SMUD																					
Overread three-phase gang operated switch		379	\$ 4,338	\$	1,498,018																
Three single-phase Cutouts.	Set	190	\$ 711	\$	134,735																
Two single-phase Cutouts	Set	132	\$ 581	\$	76,402																
Pad Mounted Switch PMH9		273	\$ 13,000	\$	3,549,000																
Recloser		29	\$ 31,000		899,000																
		1,002		s	6,157,154	\$ 6,157,154															
Assumes pole is existing in the field.																					
CAPACITORS BANKS																					
Overhead Capacitors Bank $3 \times 100 \mathrm{kVAR}$.	Unit	5	4,458				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $3 \times 200 \mathrm{kVAR}$.	Unit	46	4,458				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $3 \times 300 \mathrm{kVAR}$.	Unit	46	4,458				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $3 \times 300 \mathrm{kVAR}$. . $3 \times 200 \mathrm{kV}$,	Unit	1	8,272				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $6 \times 100 \mathrm{kVAR}$.	Unit	16	8,272				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $6 \times 200 \mathrm{kVAR}$.	Unit	15	8,272				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank $6 \times 300 \mathrm{kVAR}$.	Unit	41	6,105				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Overhead Capacitors Bank 3×200 and $3 \times 100 \mathrm{kVAR}$.	Unit	2	8,272				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Pad Mounted Capacitors Bank $3 \times 300 \mathrm{kVAR}$.	Unit	3	6,071				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
Pad Mounted Capacitors Bank $6 \times 300 \mathrm{kVAR}$.	Unit	10	8.623				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
		185																			
Smud																					
OVerhead Capacitiors Bank $3 \times 200 \mathrm{kVAR}$.Overhead Capacitors Bank $6 \times 200 \mathrm{kVAR}$.		93	4,338		402,978																
		92	\$ 10,600	s	975,200																
		185		s	1,378,178	\$ 1,378,178															
SMUD does not install padmount capacitor banks. Assumes pole is existing in the field.																					
4 Step Votage Regulator	Unit	7	1,810				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
32 Step Voltage Regulator	Unit	1	2,137				1984	20	30\%	70\%	365	R1	37	54	37.30\%	-49\%	55.58\%	45	273	477	0.5723
		8																			
Smud																					
32 step voltage regulator		8	\$ 20,000	s	160,000																
SMUD does not install 4 -step regulators				s	160,000	\$ 160,000															
Assumes poles are existing in the field.																					
TOTAL						\$ 204,337,288															
Streetights						\$1,827,518															
GRAND TOTAL						\$206,164,806															

APPENDIX F

Power Supply Costs

PG\&E -- Assumptions for Developing Yolo Power Costs

Variable Contract Costs

Fuel Costs			7,200	10,000
Heat Rate	Btu/kwh		see input table	
Gas Price	$\$ / \mathrm{MMBtu}$	1.0%	47	66
Total Fuel - Year 1	$\$ / \mathrm{MWh}$		2.5	9.7
Thermal Plant Var O\&M	$\$ / \mathrm{MWh}$	2.0%	50	75

Ancillary Services

SMUD - Assumptions for Development of Yolo Power Costs

Start Year			2008	
Input Costs in Year Dollars			2005	
System Load - Year 1		cal./		
Peak Demand	MW	2\%	370	
Peak Demand + Reserves	MW		425	
Annual energy	MWh	2\%	1,382,340	Beck input for years 2008-2027

		Unit	Escal./yr	Baseload	Peaking	Additional Costs
Resource Capacity						
	Capacity Reserve	\% of Peak			15\%	
	Percent of Peak Demand	\%of Peak+Reserves		38\%	62\%	
	Capacity - Year 1	MW		160	265	
Resource Energy						
	Percent of System Load Served	\%of Ann. Energy		86\%	14\%	
	Energy - Year 1	MWh		1,194,342	187,998	
	Capacity Factor - calculated	annual \%		91\%	8\%	
Fixed Contract Costs						
	Thermal Capital Cost	\$/kW	2.0\%	720	556	
	Insurance	\% of Plant Cost	2.0\%			0.6\%
	Property tax	\% of Plant Cost	2.0\%			1.2\%
	Debt/Equity return	\%		5\% plus 30 Coverage	8.2\%	
	Amortization period	years		25	25	
	Levelized Capital Cost - Year 1	\$/kW-yr		\$0	\$53	
	Insurance \& Property Tax	\$/kW-yr		\$13	\$10	
	Thermal Plant Fixed O\&M	\$/kW-yr	2.0\%	6.0	12.1	
	SMUD Share of Fixed Costs	\% of Fixed Costs		100\%	50\%	
	*Contract Capacity Payment	\$/kW-yr		\$19	\$38	
	*SMUD's share					

Variable Contract Costs

	Fuel Costs			
	Heat Rate	Btu/kwh		7,200

Ancillary Services

	Regulation Requirements	\% of Hrly Load			1.0%
	Unit cost	S/MWh	2.0%		13.8
Renewables	Year 2006 Goal	\% of Load			10%

APPENDIX G

Debt Service Forecast

Beck Debt Service			
	Taxable	Tax-Exempt	Total
2008	8,136	2,535	10,671
2009	8,136	2,573	10,709
2010	8,136	2,759	10,895
2011	10,490	2,948	13,439
2012	10,490	3,142	13,632
2013	10,490	3,790	14,281
2014	10,490	3,966	14,457
2015	10,490	4,175	14,666
2016	10,490	4,388	14,879
2017	10,490	4,608	15,098
2018	10,490	4,833	15,324
2019	10,490	5,066	15,556
2020	10,490	5,305	15,795
2021	10,490	5,540	16,031
2022	10,490	5,783	16,274
2023	10,490	6,027	16,517
2024	10,490	6,278	16,768
2025	10,490	6,536	17,026
2026	10,490	6,801	17,291
2027	10,490	$\underline{3} 070$	17,564
	202,746	94,126	296,872

Revised Debt Service	SMUD Revenue Requirement	Beg. Cash	Annual Cover	Taxable Capital Additions	Tax-Exempt Capital Additions	Equity Inv. Taxable Cap Additions	Equity Inv. Tax-Exempt Cap. Add.	Additional Taxable Debt	Additional Tax-Exempt Debt	End. Cash
10,335	13,436	-	3,101	111,504	31,000	-		111,504	31,000	3,101
10,675	13,878	3,101	3,203	-	8,331	-	3,101	-	5,231	3,203
11,015	14,320	3,203	3,305	-	8,431	-	3,203	-	5,228	3,305
11,356	14,762	3,305	3,407	-	8,533	-	3,305	-	5,229	3,407
11,696	15,205	3,407	3,509	-	8,639	-	3,407	-	5,232	3,509
11,711	15,224	3,509	3,513	-	3,736	-	3,509	-	227	3,513
11,732	15,252	3,513	3,520	-	3,848	-	3,513	-	334	3,520
11,761	15,290	3,520	3,528	-	3,963	-	3,520	-	443	3,528
11,797	15,337	3,528	3,539	-	4,082	-	3,528	-	554	3,539
11,841	15,393	3,539	3,552	-	4,204	-	3,539	-	665	3,552
11,891	15,459	3,552	3,567	-	4,330	-	3,552	-	778	3,567
11,949	15,534	3,567	3,585	-	4,460	-	3,567	-	893	3,585
12,015	15,619	3,585	3,604	-	4,594	-	3,585	-	1,009	3,604
12,088	15,715	3,604	3,626	-	4,732	-	3,604	-	1,128	3,626
12,169	15,820	3,626	3,651	-	4,874	-	3,626	-	1,248	3,651
12,259	15,936	3,651	3,678	-	5,020	-	3,651	-	1,369	3,678
12,356	16,062	3,678	3,707	-	5,171	-	3,678	-	1,493	3,707
12,461	16,199	3,707	3,738	-	5,326	-	3,707	-	1,619	3,738
12,575	16,347	3,738	3,772	-	5,486	-	3,738	-	1,747	3,772
12,697	16,506	3,772	3,809	-	5,650	-	3,772	-	1,878	3,809
236,380	307,294		70,914	111,504	134,411	-	67,105	111,504	67,306	

Capital Additions

	Taxable T\&D Acquisition	Stranded/Severance Costs	Total Taxable
2008	109,152	2,351	111,504
2009	-	-	-
2010	-	-	-
2011	-	-	-
2012	-	-	-
2013	-	-	-
2014	-	-	-
2015	-	-	-
2016	-	-	-
2017	-	-	-
2018	-	-	-
2019	-	-	-
2020	-	-	-
2021	-	-	-
2022	-	-	-
2023	-	-	-
2024	-	-	-
2025	-	-	-
2026	-	-	-
2027	-	-	-
	109,152	2,351	111,504

Tax-Exempt Severance Costs	Start-Up/ Upgrades	Litigation Fees	Cost of Issuance	Annual Upgrades	Generation	Total Tax-Exempt
-	20,000	10,000	1,000	-		31,000
-	5,012	-	-	3,319		8,331
-	5,012	-	-	3,419		8,431
-	5,012	-	-	3,521		8,533
-	5,012	-	-	3,627		8,639
-	-	-	-	3,736		3,736
-	-	-	-	3,848		3,848
-	-	-	-	3,963		3,963
-	-	-	-	4,082		4,082
-	-	-	-	4,204		4,204
-	-	-	-	4,330		4,330
-	-	-	-	4,460		4,460
-	-	-	-	4,594		4,594
-	-	-	-	4,732		4,732
-	-	-	-	4,874		4,874
-	-	-	-	5,020		5,020
-	-	-	-	5,171		5,171
-	-	-	-	5,326		5,326
-	-	-	-	5,486		5,486
-	-	-	-	5,650		5,650
-	40,049	10,000	1,000	83,362	-	134,411

Assumptions
Borrowing and equity drawdown on Jan. 1 each year
Annual cover based on current year debt service
Annual cover is not used to fund capital additions for the year in which recovered
Cash is derived from cover and is first used to fund taxable capital additions, then tax-exempt additions
Levelized debt service payment
Debt term, years
$\begin{array}{ll}\text { Cover requirement } & 30 \\ & 0.3\end{array}$
Taxable rate $\quad 0.3$
Tax-exempt rate $\quad 5.000 \%$
(per Beck study)
(80\% of taxable rate)

Annexation Debt Requirements

Taxable		2008		2009		2010		2011		2012		2013		2014		2015		2016		2017		2018
Existing Facilities 2008	\$	109,152,432																				
Stranded Costs	\$	-																				
Total Taxable	\$	109,152,432		N/A																		
Non Taxable																						
Severance Costs	\$	2,351,153																				
Start-Up	\$	20,000,000	\$	5,012,371	\$	5,012,371	\$	5,012,371	\$	5,012,371												
Litigation Fees	\$	10,000,000																				
Cost of Issuance	\$	1,000,000																				
Total Non-Taxable [1]	\$	33,351,153	\$	8,331,331	\$	8,430,900	\$	8,533,456	\$	8,639,088	\$	3,735,519	\$	3,847,584	\$	3,963,012	\$	4,081,902	\$	4,204,359	\$	4,330,490

[1] Includes expected reimbursements for Rule 15 and Rule 16.

